Example 15 - Chapter 7 Class 12 Integrals (Important Question)
Last updated at Dec. 16, 2024 by Teachoo
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i)
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 25 (MCQ) Important
Example 15 Important You are here
Ex 7.5, 9 Important
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 21 Important
Example 20 Important
Example 22 Important
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important
Question 4 Important
Question 6 Important
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important
Misc 18 Important
Misc 8 Important
Question 1 Important
Misc 23 Important
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Example 15 Find ∫1▒((3 sinϕ −2) cosϕ )/(5 − cos^2ϕ − 4 sinϕ ) 𝑑ϕ Let 𝑡=sinϕ Differentiating w.r.t. ϕ 𝑑𝑡/𝑑ϕ=cosϕ 𝑑𝑡/cosϕ =𝑑ϕ Now we can write ∫1▒((3 sinϕ −2) cosϕ )/(5 − cos^2ϕ − 4 sinϕ ) 𝑑ϕ =∫1▒((3 sinϕ − 2) cosϕ )/(5 − (1 − sin^2ϕ) − 4 sinϕ ) 𝑑ϕ =∫1▒((3𝑡 − 2) cosϕ )/(5 − 1 + 𝑡^2 − 4𝑡) 𝑑𝑡/cosϕ =∫1▒((3𝑡 − 2) 𝑑𝑡 )/(4 + 𝑡^2 − 4𝑡) =∫1▒((3𝑡 − 2) 𝑑𝑡 )/(𝑡^2 + 2^2 − 2.2 𝑡) =∫1▒((3𝑡 − 2) 𝑑𝑡 )/(𝑡 − 2)^2 We can write integrand ((3𝑡 − 2))/(𝑡 − 2)^2 =(𝐴 )/(𝑡 − 2) + (𝐵 )/(𝑡 − 2)^2 〖𝑠𝑖𝑛〗^2ϕ+〖𝑐𝑜𝑠〗^2ϕ=1 〖𝑐𝑜𝑠〗^2 ϕ=1−〖𝑠𝑖𝑛〗^2 ϕ (3𝑡 − 2)/(𝑡 − 2)^2 =(𝐴(𝑡 − 2) + 𝐵)/(𝑡 − 2)^2 Cancelling denominator (3𝑡−2)=𝐴(𝑡−2)+𝐵 Putting t = 2 (3(2) − 2) = A (2 − 2) + B 6 − 2 = A × 0 + B 4 = B B = 4 Putting t = 0 (3(0) − 2) = A (0 − 2) + B −2 = −2A + B Putting B = 4 −2 = −2A + 4 −6 = −2A A = 3 Hence, we can write it as ((3𝑡 − 2))/(𝑡 − 2)^2 =(𝐴 )/(𝑡 − 2) + (𝐵 )/(𝑡 − 2)^2 ((3𝑡 − 2))/(𝑡 − 2)^2 = 3/(𝑡 − 2) + 4/(𝑡 − 2)^2 Now, our equation becomes ∫1▒(3𝑡 − 2)/(𝑡 − 2)^2 𝑑𝑡=∫1▒3/(𝑡 − 2) 𝑑𝑡+∫1▒4/(𝑡 − 2)^2 𝑑𝑡 =3 log|𝑡−2|+4×(𝑡 − 2)^(−1)/(−1) +𝐶 =3 log|𝑡−2|−4×1/((𝑡 − 2) ) +𝐶 Substituting back the value of t =3 log|sinϕ−2|−4/(sinϕ − 2) +𝐶 =3 𝑙𝑜𝑔〖(2−𝑠𝑖𝑛𝜙)〗−4/(𝑠𝑖𝑛𝜙 − 2) +𝐶 =3 𝑙𝑜𝑔〖(2−𝑠𝑖𝑛𝜙)〗−4/(−(2 − 𝑠𝑖𝑛𝜙)) +𝐶 =𝟑 𝒍𝒐𝒈〖(𝟐−𝒔𝒊𝒏𝝓)〗+𝟒/(𝟐 − 𝒔𝒊𝒏𝝓 ) +𝑪 Since 𝑠𝑖𝑛ϕ∈[−1 , 1] 𝑠𝑖𝑛ϕ<2 2−𝑠𝑖𝑛ϕ always positive |𝑠𝑖𝑛ϕ−2|=2−𝑠𝑖𝑛ϕ