Example 10 (i) - Chapter 7 Class 12 Integrals (Important Question)
Last updated at April 16, 2024 by Teachoo
Chapter 7 Class 12 Integrals
Ex 7.1, 18 Important
Ex 7.1, 20
Ex 7.2, 20 Important
Ex 7.2, 26 Important
Ex 7.2, 35
Ex 7.2, 36 Important
Ex 7.3, 6 Important
Ex 7.3, 13 Important
Ex 7.3, 18 Important
Ex 7.3, 22 Important
Ex 7.3, 24 (MCQ) Important
Example 9 (i)
Example 10 (i) You are here
Ex 7.4, 8 Important
Ex 7.4, 15 Important
Ex 7.4, 21 Important
Ex 7.4, 22
Ex 7.4, 25 (MCQ) Important
Example 15 Important
Ex 7.5, 9 Important
Ex 7.5, 11 Important
Ex 7.5, 17
Ex 7.5, 18 Important
Ex 7.5, 21 Important
Example 20 Important
Example 22 Important
Ex 7.6, 13 Important
Ex 7.6, 14 Important
Ex 7.6, 18 Important
Ex 7.6, 19
Ex 7.6, 24 (MCQ) Important
Ex 7.7, 5 Important
Ex 7.7, 10
Ex 7.7, 11 Important
Question 1 Important
Question 4 Important
Question 6 Important
Example 25 (i)
Ex 7.8, 15
Ex 7.8, 16 Important
Ex 7.8, 20 Important
Ex 7.8, 22 (MCQ)
Ex 7.9, 4
Ex 7.9, 7 Important
Ex 7.9, 8
Ex 7.9, 9 (MCQ) Important
Example 28 Important
Example 32 Important
Example 34 Important
Ex 7.10,8 Important
Ex 7.10, 18 Important
Example 38 Important
Example 39 Important
Example 42 Important
Misc 18 Important
Misc 8 Important
Question 1 Important
Misc 23 Important
Misc 29 Important
Question 2 Important
Misc 38 (MCQ) Important
Question 4 (MCQ) Important
Integration Formula Sheet Important
Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Example 10 Find the following integrals: (i) β«1β(π₯ + 2)/(2π₯^2 + 6π₯ + 5 ) ππ₯ We can write numerator as π₯+2= A π/ππ₯ (2π₯^2+6π₯+5) + B π₯+2= A [4π₯+6]+ B π₯+2=4π΄π₯+6A+B Finding A & B Comparing coefficient of π₯ π₯=4π΄π₯ 1 =4A A=1/4 Comparing constant term 2=6A+B 2=6(1/4)+B 2=3/2+B B=2β3/2=1/2 Now, we know that π₯+2= A [4π₯+6]+ B π₯+2=1/4 [4π₯+6]+1/2 Now, our equation is β«1βγ(π₯ + 2)/(2π₯^2 + 6π₯ + 5).ππ₯=β«1βγ(1/4 [4π₯ + 6] + 1/2)/(2π₯^2 + 6π₯ + 5).ππ₯γγ =β«1βγ(1/4 [4π₯ + 6])/(2π₯^2 + 6π₯ + 5)+β«1βγ(1/2)/(2π₯^2+6π₯+5).ππ₯γγ =1/4 β«1βγ(4π₯ + 6)/(2π₯^2 + 6π₯ + 5) ππ₯+1/2 β«1βγ1/(2π₯^2 + 6π₯ + 5).ππ₯γγ Solving I1 I1 =1/4 β«1βγ(4π₯ + 6)/(2π₯^2 + 6π₯ + 5) ππ₯γ Let t = 2π₯^2 + 6π₯ + 5 Differentiating both sides w.r.t.π₯ 4π₯ +6=ππ‘/ππ₯ ππ₯=ππ‘/(4π₯ + 6) Now, I1 =1/4 β«1βγ(4π₯ + 6)/(2π₯^2 + 6π₯ + 5).ππ₯γ Putting the values of (2π₯^2+6π₯+5) and ππ₯, we get I1 =1/4 β«1βγ(4π₯ + 6)/π‘.ππ‘/(4π₯ + 6) γ I1 =1/4 β«1βγ1/π‘.ππ‘ γ I1 =1/4 πππ|π‘|+πΆ1 I1 =1/4 πππ|2π₯^2+6π₯+5|+πΆ1 Solving I2 I2 =1/2 β«1βγ1/(2π₯^2 + 6π₯ + 5).ππ₯ γ I2 =1/2 β«1βγ1/2[π₯^2 + 6π₯/2 + 5/2 ] .ππ₯ γ I2 =1/4 β«1βγ1/(π₯^2 +3π₯ + 5/2).ππ₯ γ (Using β«1βγ1/π₯.ππ₯=πππ|π₯|+πΆ1γ) (Using π‘=2π₯^2+6π₯+5) I2 =1/4 β«1βγ1/(π₯^2 + 2(π₯)(3/2) + 5/2).ππ₯ γ Adding & subtracting (3/2)^2 in denominator I2 =1/4 β«1βγ1/(π₯^2 + 2(π₯) γ(3/2) +(3/2)^2β (3/2)γ^2 + 5/2).ππ₯ γ I2 =1/4 β«1βγ1/((π₯ + 3/2)^2 β (3/2)^2 + 5/2) ππ₯ γ I2 =1/4 β«1βγ1/((π₯ + 3/2)^2 β 9/4 + 5/2).ππ₯ γ I2 =1/4 β«1βγ1/((π₯ + 3/2)^2+ (β9 + 10)/4 ).ππ₯ γ I2 =1/4 β«1βγ1/((π₯ + 3/2)^2+ 1/4 ).ππ₯ γ I2 =1/4 β«1βγ1/((π₯ + 3/2)^2+ (1/2)^2 ).ππ₯ γ =1/4 [1/(1/2) tan^(β1)β‘γ(π₯ + 3/2)/(1/2)+πΆ2γ ] =1/4 [2 tan^(β1)β‘γ((2π₯ + 3)/2)/(1/2)+πΆ2γ ] =1/4 [2 γtan^(β1) (2π₯+3)γβ‘γ+πΆ2γ ] It is of form β«1βγππ₯/(π₯^2 + π^2 )=1/π γπ‘ππγ^(β1)β‘γπ₯/π+πΆ2" " γ γ Replacing π₯ by (π₯+3/2) and by 1/2, we get =2/4 tan^(β1)β‘γ(2π₯+3)+πΆ2/4γ =1/2 tan^(β1)β‘γ(2π₯+3)+πΆ3γ Now, putting the value of I1 and I2 in eq. (1) β΄ β«1βγ(π₯+2)/(2π₯^2 + 6π₯ + 5).ππ₯γ =1/4 πππ|2π₯^2+6π₯+5|+πΆ1+1/2 tan^(β1)β‘γ(2π₯+3)+γ πΆ3 =π/π πππ|ππ^π+ππ+π|+π/π γπππγ^(βπ)β‘γ(ππ+π)+γ πͺ (where πΆ3 = πΆ2/4 )