Example 7 - Find intgeral (i) cos2 x dx (ii) sin 2x cos 3x

Example 7 - Chapter 7 Class 12 Integrals - Part 2
Example 7 - Chapter 7 Class 12 Integrals - Part 3

 

Go Ad-free

Transcript

Example 7 Find (i) ∫1β–’cos^2⁑π‘₯ 𝑑π‘₯ ∫1β–’cos^2⁑π‘₯ 𝑑π‘₯ =∫1β–’((cos⁑2π‘₯ + 1)/2) 𝑑π‘₯ = 1/2 ∫1β–’(cos⁑2π‘₯+1) 𝑑π‘₯ = 1/2 [∫1β–’cos⁑2π‘₯ 𝑑π‘₯+∫1β–’1 𝑑π‘₯] We know cos⁑2π‘₯=2 cos^2⁑π‘₯βˆ’1 cos⁑2π‘₯+1=2 cos^2⁑π‘₯ (cos⁑2π‘₯ + 1)/2=cos^2⁑π‘₯ ∫1β–’π’„π’π’”β‘πŸπ’™ 𝒅𝒙 Let 2π‘₯=𝑑 2 =𝑑𝑑/𝑑π‘₯ 𝑑π‘₯=1/2 𝑑𝑑 ∫1β–’cos⁑𝑑 . 1/2 𝑑𝑑 =1/2 (sin⁑𝑑+𝐢1) Putting value of 𝑑 = 2π‘₯ =1/2 sin⁑2π‘₯+𝐢1 ∫1β–’πŸ 𝒅𝒙 =∫1β–’π‘₯^0 𝑑π‘₯ =[π‘₯^(0 + 1)/(0 + 1)]+𝐢 =π‘₯+𝐢2 Thus, ∫1β–’cos^2⁑π‘₯ 𝑑π‘₯=1/2 [∫1β–’cos⁑2π‘₯ 𝑑π‘₯+∫1β–’1 𝑑π‘₯] =1/2 [1/2 sin⁑2π‘₯+𝐢1+π‘₯+𝐢2] =1/4 sin⁑2π‘₯+π‘₯/2+1/2(𝐢1+𝐢2) =𝒙/𝟐+𝟏/πŸ’ π¬π’π§β‘πŸπ’™+π‘ͺ ("From (1) and (2) " ) ("Let" 𝐢1+𝐢2=𝐢)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo