Chapter 7 Class 12 Integrals
Concept wise

  Slide55.JPG

Slide56.JPG
Slide57.JPG

Go Ad-free

Transcript

Ex 7.10, 21 The value of ∫_0^(πœ‹/2)β–’π‘™π‘œπ‘”((4 + 3 sin⁑π‘₯)/(4 + 3 cos⁑π‘₯ ))𝑑π‘₯ is 2 (B) 3/4 (C) 0 (D) βˆ’2 Let I=∫_0^(πœ‹/2)β–’π‘™π‘œπ‘”[(4 + 3 sin⁑π‘₯)/(4 + 3 π‘π‘œπ‘  π‘₯)] 𝑑π‘₯ ∴ I =∫_0^(πœ‹/2)β–’π‘™π‘œπ‘”[(4 + 3𝑠𝑖𝑛(πœ‹/2 βˆ’ π‘₯))/(4 + 3π‘π‘œπ‘ (πœ‹/2 βˆ’ π‘₯) )] 𝑑π‘₯ I =∫_0^(πœ‹/2)β–’π‘™π‘œπ‘”[(4 + 3π‘π‘œπ‘ π‘₯)/(4 + 3 sin⁑π‘₯ )] 𝑑π‘₯ Adding (1) and (2) i.e. (1) + (2) I +I=∫_0^(πœ‹/2)β–’π‘™π‘œπ‘”[(4 + 3 sin⁑π‘₯)/(4 + 3 cos⁑π‘₯ )] 𝑑π‘₯+∫_0^(πœ‹/2)β–’π‘™π‘œπ‘”[(4 + 3 cos⁑π‘₯)/(4 + 3 sin⁑π‘₯ )] 𝑑π‘₯ 2I = ∫_0^(πœ‹/2)β–’{π‘™π‘œπ‘”[(4 + 3 sin⁑π‘₯)/(4 + 3 cos⁑π‘₯ )]+π‘™π‘œπ‘”[(4 + 3 cos⁑π‘₯)/(4 + 3 sin⁑π‘₯ )]}𝑑π‘₯" " 2I = ∫_0^(πœ‹/2)β–’π‘™π‘œπ‘”[(4 + 3 sin⁑π‘₯)/(4 + 3 cos⁑π‘₯ )Γ—(4 + 3 cos⁑π‘₯)/(4 + 3 sin⁑π‘₯ )]𝑑π‘₯" " 2I=∫_0^(πœ‹/2)β–’γ€–log⁑1 𝑑π‘₯γ€— 2I = 0 ∴ I = 0 ∴ Option C is correct.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo