Ex 7.10, 19 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Definite Integration by properties - P4
Ex 7.10, 2
Ex 7.10, 3 Important
Example 32 Important
Ex 7.10, 4
Ex 7.10, 15
Ex 7.10, 17
Ex 7.10, 21 (MCQ) Important
Ex 7.10, 19 You are here
Ex 7.10, 12 Important
Ex 7.10, 9
Ex 7.10,7 Important
Example 30
Question 4 (MCQ) Important
Ex 7.10, 10 Important
Ex 7.10,8 Important
Example 34 Important
Ex 7.10, 16 Important
Question 2 Important
Example 42 Important
Definite Integration by properties - P4
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.10, 19 Show that ∫_0^𝑎▒𝑓(𝑥) 𝑔 (𝑥) 𝑑𝑥=2∫_0^𝑎▒𝑓(𝑥) 𝑑𝑥, if f and g are defined as 𝑓(𝑥)=𝑓(𝑎−𝑥) and 𝑔(𝑥)+𝑔(𝑎−𝑥)=4 Let I =∫_0^𝑎▒𝑓(𝑥) 𝑔(𝑥) 𝑑𝑥 I =∫_0^𝑎▒𝑓(𝑥) [4−𝑔(𝑎−𝑥)] 𝑑𝑥 I = ∫_0^𝑎▒[4.𝑓(𝑥)−𝑓(𝑥)𝑔(𝑎−𝑥)] 𝑑𝑥 I = 4∫_0^𝑎▒〖𝑓(𝑥)𝑑𝑥−∫_0^𝑎▒〖𝑓(𝑥) 𝑔(𝑎−𝑥) 〗〗 𝑑𝑥 I = 4∫_0^𝑎▒〖𝑓(𝑥)𝑑𝑥−∫_0^𝑎▒〖𝑓(𝑎−𝑥) 𝑔(𝑎−(𝑎−𝑥)) 〗〗 𝑑𝑥 I = 4∫_0^𝑎▒〖𝑓(𝑥)𝑑𝑥−∫_0^𝑎▒〖𝑓(𝑥) 𝑔(𝑥) 〗〗 𝑑𝑥 I =4∫_0^𝑎▒〖𝑓(𝑥)𝑑𝑥−I〗 I +I=4∫_0^𝑎▒𝑓(𝑥)𝑑𝑥 2I=4∫_0^𝑎▒𝑓(𝑥)𝑑𝑥 I=2∫_0^𝑎▒𝑓(𝑥)𝑑𝑥 ∴ ∫_0^𝑎▒〖𝑓(𝑥) 𝑔(𝑥) 〗 𝑑𝑥=2∫_0^𝑎▒𝑓(𝑥)𝑑𝑥 Hence Proved