Slide18.JPG

Slide19.JPG
Slide20.JPG

Go Ad-free

Transcript

Ex 7.10, 8 By using the properties of definite integrals, evaluate the integrals : ∫_0^(πœ‹/4)β–’log⁑(1+tan⁑π‘₯ ) 𝑑π‘₯ Let I=∫_0^(πœ‹/4)β–’log⁑〖 (1+tan⁑π‘₯ )γ€— 𝑑π‘₯ ∴ I=∫_0^(πœ‹/4)β–’log⁑[1+𝐭𝐚𝐧⁑(𝝅/πŸ’βˆ’π’™) ] 𝑑π‘₯ I=∫_0^(πœ‹/4)β–’log⁑[1+(tan⁑ πœ‹/4 βˆ’tan⁑π‘₯)/(1 +γ€– tan〗⁑ πœ‹/4 . tan⁑π‘₯ )] 𝑑π‘₯ I=∫_0^(πœ‹/4)β–’log⁑[1+(1 βˆ’ tan⁑π‘₯)/(1 + 1 . tan⁑π‘₯ )] 𝑑π‘₯ I=∫_0^(πœ‹/4)β–’log⁑[(1 βˆ’ tan⁑π‘₯ + 1 βˆ’ tan⁑π‘₯)/(1 + tan⁑π‘₯ )] 𝑑π‘₯ I=∫_𝟎^(𝝅/πŸ’)β–’π’π’π’ˆβ‘[𝟐/(𝟏 + 𝒕𝒂𝒏⁑𝒙 )] 𝒅𝒙 Using log⁑(π‘Ž/𝑏)=logβ‘π‘Žβˆ’log⁑𝑏 I=∫_0^(πœ‹/4)β–’[log⁑2 βˆ’log⁑(1+tan⁑π‘₯ ) ] 𝑑π‘₯ 𝐈=∫_𝟎^(𝝅/πŸ’)β–’π’π’π’ˆβ‘πŸ π’…π’™βˆ’βˆ«_𝟎^(𝝅/πŸ’)β–’π’π’π’ˆβ‘(𝟏+𝒕𝒂𝒏⁑𝒙 ) 𝒅𝒙 Adding (1) and (2) i.e. (1) + (2) I+I=∫_0^(πœ‹/4)β–’log⁑(1+tan⁑π‘₯ ) 𝑑π‘₯+∫_0^(πœ‹/4)β–’log⁑2 𝑑π‘₯βˆ’βˆ«_0^(πœ‹/4)β–’log⁑(1+tan⁑π‘₯ ) πŸπ‘°=∫_𝟎^(𝝅/πŸ’)β–’π’π’π’ˆβ‘πŸ 𝒅𝒙 2I=log⁑〖 2γ€— ∫_0^(πœ‹/4)▒𝑑π‘₯ I=log⁑〖 2γ€—/2 [π‘₯]_0^(πœ‹/4) I=log⁑2/2 [πœ‹/4 βˆ’ 0] I=log⁑2/2Γ—πœ‹/4 𝑰=𝝅/πŸ– π’π’π’ˆβ‘πŸ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo