Definite Integration by properties - P4
Ex 7.10, 2
Ex 7.10, 3 Important
Example 32 Important
Ex 7.10, 4
Ex 7.10, 15
Ex 7.10, 17
Ex 7.10, 21 (MCQ) Important
Ex 7.10, 19
Ex 7.10, 12 Important
Ex 7.10, 9
Ex 7.10,7 Important You are here
Example 30
Question 4 (MCQ) Important
Ex 7.10, 10 Important
Ex 7.10,8 Important
Example 34 Important
Ex 7.10, 16 Important
Question 2 Important
Example 42 Important
Definite Integration by properties - P4
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.10,7 By using the properties of definite integrals, evaluate the integrals : ∫_0^1▒〖 𝑥(1−𝑥)^𝑛 〗 𝑑𝑥 Let I=∫_0^1▒〖𝑥(1−𝑥)^𝑛 𝑑𝑥〗 ∴ I=∫_0^1▒〖(1−𝑥) [1−(1−𝑥)]^𝑛 𝑑𝑥〗 I=∫_0^1▒〖(1−𝑥) [1−1+𝑥]^𝑛 𝑑𝑥〗 I=∫_0^1▒〖(1−𝑥) [𝑥]^𝑛 𝑑𝑥〗 I= ∫_0^1▒〖(1−𝑥) 〖 𝑥〗^𝑛 𝑑𝑥〗 I= ∫_0^1▒〖(〖 𝑥〗^𝑛− 𝑥^(𝑛 + 1) ) 𝑑𝑥〗 I= ∫_0^1▒〖〖 𝑥〗^𝑛 𝑑𝑥〗−∫_0^1▒〖〖 𝑥〗^(𝑛 + 1) 𝑑𝑥〗 I=[𝑥^(𝑛 + 1)/(𝑛 + 1)]_0^1−[𝑥^(𝑛 + 2)/(𝑛 + 2)]_0^1 I=[(1)^(𝑛 + 1)/(𝑛 + 1)−(0)^(𝑛 + 1)/(𝑛 + 1)]−[(1)^(𝑛 + 2)/(𝑛 + 2)−(0)^(𝑛 + 2)/(𝑛 + 2)] I= 1/(𝑛 + 1)−1/(𝑛 + 2) I=(𝑛 + 2 − (𝑛 + 1))/(𝑛 + 1)(𝑛 + 2) 𝐈=𝟏/(𝒏 + 𝟏)(𝒏 + 𝟐)