Ex 7.10, 2 - Chapter 7 Class 12 Integrals
Last updated at Dec. 16, 2024 by Teachoo
Definite Integration by properties - P4
Ex 7.10, 2 You are here
Ex 7.10, 3 Important
Example 32 Important
Ex 7.10, 4
Ex 7.10, 15
Ex 7.10, 17
Ex 7.10, 21 (MCQ) Important
Ex 7.10, 19
Ex 7.10, 12 Important
Ex 7.10, 9
Ex 7.10,7 Important
Example 30
Question 4 (MCQ) Important
Ex 7.10, 10 Important
Ex 7.10,8 Important
Example 34 Important
Ex 7.10, 16 Important
Question 2 Important
Example 42 Important
Definite Integration by properties - P4
Last updated at Dec. 16, 2024 by Teachoo
Ex 7.10, 2 By using the properties of definite integrals, evaluate the integrals : β«_0^(π/2)βγβ(sinβ‘π₯ )/(β(sinβ‘π₯ ) + β(cosβ‘π₯ ) ) ππ₯γ Let I=β«_0^(π/2)βγβ(sinβ‘π₯ )/(β(sinβ‘π₯ ) + β(cosβ‘π₯ ) ) ππ₯γ I= β«_0^(π/2)βγβ(γsin γβ‘(π/2 β π₯) )/(β(γsin γβ‘(π/2 β π₯) ) + β(γcos γβ‘(π/2 β π₯) ) ) ππ₯γ β΄ I= β«_0^(π/2)βγβ(γπππ γβ‘π₯ )/(β(γπππ γβ‘π₯ ) + β(π ππβ‘π₯ ) ) ππ₯γ Adding (1) and (2) i.e. (1) + (2) I+I= β«_0^(π/2)βγβ(γsin γβ‘π₯ )/(β(γsin γβ‘π₯ ) + β(γcos γβ‘π₯ ) ) ππ₯γ+β«_0^(π/2)βγβ(πππ β‘π₯ )/(β(πππ β‘π₯ ) + β(π ππβ‘π₯ ) ) ππ₯γ 2I=β«_0^(π/2)βγ[(β(γsin γβ‘π₯ ) + β(πππ β‘π₯ ))/(β(γsin γβ‘π₯ ) + β(πππ β‘π₯ )) ] ππ₯γ 2I= β«_0^(π/2)βγ ππ₯γ I=1/2 β«_0^(π/2)βγ ππ₯γ I= 1/2 [π₯]_0^(π/2) I=1/2 [π/2β0] β΄ I= π/4