Chapter 7 Class 12 Integrals
Concept wise

Ex 7.1, 18 - Integrate sec x (sec x + tan x) dx - Class 12

Go Ad-free

Transcript

Ex 7.1, 18 Find anti derivative of ∫1β–’γ€–sec⁑π‘₯ (sec⁑〖π‘₯+tan⁑π‘₯ γ€—)γ€—dx ∫1▒〖𝑠𝑒𝑐⁑π‘₯ (𝑠𝑒𝑐⁑〖π‘₯+π‘‘π‘Žπ‘›β‘π‘₯ γ€—)γ€— 𝑑π‘₯ =∫1β–’γ€– (〖𝑠𝑒𝑐〗^2⁑〖π‘₯+〖𝑠𝑒𝑐 π‘₯ π‘‘π‘Žπ‘›γ€—β‘π‘₯ γ€—)γ€— 𝑑π‘₯ =∫1▒〖〖𝑠𝑒𝑐〗^2 π‘₯ 𝑑π‘₯+ γ€— ∫1β–’(𝑠𝑒𝑐 π‘₯ π‘‘π‘Žπ‘›β‘π‘₯ ) 𝑑π‘₯ =𝒕𝒂𝒏⁑𝒙+𝒔𝒆𝒄⁑𝒙+π‘ͺ As ∫1β–’γ€–sec^2⁑π‘₯ 𝑑π‘₯=tan⁑π‘₯ γ€—+𝐢 & ∫1β–’sec⁑π‘₯⁑tan⁑π‘₯ 𝑑π‘₯=sec⁑π‘₯+𝐢

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo