Ex 7.1, 5 - Chapter 7 Class 12 Integrals
Last updated at April 16, 2024 by Teachoo
Using Trignometric Formulaes
Last updated at April 16, 2024 by Teachoo
Ex 7.1, 5 Find anti derivative of sinβ‘2π₯ β 4π3π₯ Subtracting (1) & (2) sinβ‘2π₯βγ4πγ^3π₯=(β1)/2 (cosβ‘2π₯ )^β²β 4/3 (π^3π₯ )^β² We know that (cosβ‘2π₯ )^β²=β2 sinβ‘2π₯ (β1)/2 (cosβ‘2π₯ )^β²=sinβ‘2π₯ π¬π’π§ ππ=(βπ)/π (πππβ‘ππ )^β² We know that (π^3π₯ )^β²=π^3π₯ . 3 β γ1(π^3π₯ )γ^β²/3=π^3π₯ βπ^3π₯=γ1(π^3π₯ )γ^β²/3 βγππγ^ππ=π/π (π^ππ )^β² β¦(2) =(β1/2 cosβ‘2π₯β4/3 π^3π₯ )^β² β΄ Anti derivative is (βπ)/π πππβ‘ππβ π/π π^ππ