Slide12.JPG

Slide13.JPG
Slide14.JPG
Slide15.JPG
Slide16.JPG Slide17.JPG Slide18.JPG

Go Ad-free

Transcript

Ex 9.4, 3 In each of the Exercise 1 to 10, show that the given differential equation is homogeneous and solve each of them. (xβˆ’y)𝑑yβˆ’(x+y)𝑑π‘₯=0 Step 1: Find 𝑑𝑦/𝑑π‘₯ (x βˆ’ y) dy βˆ’ (x + y) dx = 0 (x βˆ’ y) dy = (x + y) dx π’…π’š/𝒅𝒙 = (𝒙 + π’š)/(𝒙 βˆ’ π’š) Step 2: Put 𝑑𝑦/𝑑π‘₯ = F(x, y) and find out F(πœ†x, πœ†y) F(x, y) = (π‘₯ + 𝑦)/(π‘₯ βˆ’ 𝑦) F(πœ†x, πœ†y) = (πœ†π‘₯ + πœ†π‘¦)/(πœ†π‘₯βˆ’πœ†π‘¦) = (πœ†(π‘₯ + 𝑦))/(πœ† (π‘₯ βˆ’ 𝑦)) = (π‘₯ + 𝑦)/(π‘₯ βˆ’ 𝑦) = F(x, y) ∴ F(πœ†x, πœ†y) = πœ†0 F(x, y) Hence, F(x, y) is a homogenous Function of with degree zero So, 𝑑𝑦/𝑑π‘₯ is a homogenous differential equation. Step 3: Solving 𝑑𝑦/𝑑π‘₯ by putting y = vx Putting y = vx. Differentiating w.r.t. x 𝑑𝑦/𝑑π‘₯ = x 𝑑𝑣/𝑑π‘₯+𝑣𝑑π‘₯/𝑑π‘₯ π’…π’š/𝒅𝒙 = 𝒙 𝒅𝒗/𝒅𝒙 + v Putting value of 𝑑𝑦/𝑑π‘₯ and y = vx in (1) 𝑑𝑦/𝑑π‘₯ = (π‘₯ + 𝑦)/(π‘₯ βˆ’ 𝑦) x 𝒅𝒗/𝒅𝒙 + v = (𝒙 + 𝒙𝒗)/(𝒙 βˆ’ 𝒙𝒗) x 𝑑𝑣/𝑑π‘₯ + v = (π‘₯ (1 + 𝑣))/(π‘₯(1 βˆ’ 𝑣)) x 𝑑𝑣/𝑑π‘₯ + v = ((1 + 𝑣))/((1 βˆ’ 𝑣)) x 𝑑𝑣/𝑑π‘₯ = ((1 + 𝑣))/((1 βˆ’ 𝑣)) βˆ’ v x 𝑑𝑣/𝑑π‘₯ = (1 + 𝑣 βˆ’ 𝑣(1 βˆ’ 𝑣))/(1 βˆ’ 𝑣) x 𝑑𝑣/𝑑π‘₯ = (1 + 𝑣 βˆ’ 𝑣 + 𝑣^2)/(1 βˆ’ 𝑣) x 𝑑𝑣/𝑑π‘₯ = (1 + 𝑣^2)/(1 βˆ’ 𝑣) (𝟏 βˆ’ 𝒗)𝒅𝒗/(𝟏 + 𝒗^𝟐 ) = 𝒅𝒙/𝒙 Integrating both sides ∫1β–’((1 βˆ’ 𝑣)/(1 + 𝑣^2 )) 𝑑𝑣=∫1▒𝑑π‘₯/π‘₯ ∫1▒𝑑𝑣/(1 + 𝑣^2 )βˆ’βˆ«1β–’(𝑣 𝑑𝑣)/(1 + 𝑣^2 )=∫1▒𝑑π‘₯/π‘₯ tanβˆ’1 v βˆ’ ∫1▒𝒗/(𝟏 + 𝒗^𝟐 ) = log|𝒙|+𝒄 Let I = ∫1▒𝒗/(𝟏 + 𝒗^𝟐 ) dv Putting t = 1 + 𝒗^𝟐 Diff w.r.t. v 𝑑/𝑑𝑣(1 + v2) = 𝑑𝑑/𝑑𝑣 2v = 𝑑𝑑/𝑑𝑣 dv = 𝒅𝒕/πŸπ’— Therefore I = ∫1▒𝑣/(1 + 𝑣^2 ) dv = ∫1▒𝑑𝑑/2𝑑 = 1/2 π‘™π‘œπ‘”|𝑑|+𝑐 Putting back t = 1 + v2 = 1/2 π‘™π‘œπ‘”|1+𝑣^2 | + c (As ∫1β–’1/(1 + π‘₯^2 ) dx = tanβˆ’1 x) Putting value of I in (2) tanβˆ’1 v βˆ’ ∫1▒𝒗/(𝟏 + 𝒗^𝟐 ) = log|π‘₯|+𝑐 tanβˆ’1 v "βˆ’ " 𝟏/𝟐 log |𝟏+π’—πŸ| = log |π‘₯| + c tanβˆ’1 v "= " 1/2 log |1+𝑣2| + log |π‘₯| + c tanβˆ’1 v "= " 1/2 log |1+𝑣2| + 2/2 log |π‘₯| + c tanβˆ’1 v "= " 1/2 ["log " |1+𝑣2|" + " 2" log " |π‘₯|] + c tanβˆ’1 v "= " 𝟏/𝟐 "log" [" " |𝟏+π’—πŸ|.|𝒙|^𝟐 ] + c Putting v = 𝑦/π‘₯ tanβˆ’1 π’š/𝒙 "= " 𝟏/𝟐 "log" [" " (𝟏+(π’š/𝒙)^𝟐 )×𝒙^𝟐 ]+𝐜 tanβˆ’1 𝑦/π‘₯ "= " 1/2 "log" [(π‘₯^2 + 𝑦^2)/π‘₯^2 Γ—π‘₯^2 ]+c tanβˆ’1 𝑦/π‘₯ "= " 1/2 "log" [π‘₯^2+𝑦^2 ]+c tanβˆ’1 π’š/𝒙 "= " 𝟏/𝟐 "log" [𝒙^𝟐+π’š^𝟐 ]+𝐜 is the required solution

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo