Ex 9.3, 23 (MCQ) - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Variable separation - Equation given
Example 20
Misc 13 (MCQ)
Ex 9.3, 3
Ex 9.3, 8
Example 4
Ex 9.3, 7 Important
Example 5
Ex 9.3, 6
Ex 9.3, 2
Misc 4
Example 6
Ex 9.3, 5
Ex 9.3, 14
Ex 9.3, 13
Example 7 Important
Ex 9.3, 16
Ex 9.3, 12
Ex 9.3, 11 Important
Ex 9.3, 1 Important
Ex 9.3, 15 Important
Misc 7 Important
Ex 9.3, 4 Important
Ex 9.3, 9 Important
Misc 6
Ex 9.3, 10 Important
Misc 12 Important
Misc 5 Important
Variable separation - Equation given
Last updated at Dec. 16, 2024 by Teachoo
Ex 9.3, 23 The general solution of the differential equation 𝑑𝑦/𝑑𝑥=𝑒^(𝑥+𝑦) is (A) 𝑒^𝑥+𝑒^(−𝑦)=𝐶 (B) 𝑒^𝑥+𝑒^𝑦=𝐶 (C) 𝑒^(−𝑥)+𝑒^𝑦=𝐶 (D) 𝑒^(−𝑥)+𝑒^(−𝑦)=𝐶 𝑑𝑦/𝑑𝑥 = 𝑒^(𝑥 + 𝑦) 𝑑𝑦/𝑑𝑥 = 𝑒^(𝑥 ) 𝑒^( 𝑦) 𝒅𝒚/𝒆^𝒚 = 𝒆^(𝒙 ) 𝒅𝒙 Integrating both sides ∫1▒𝑒^(−𝑦) 𝑑𝑦= ∫1▒𝑒^𝑥 𝑑𝑥 〖−𝒆〗^(−𝒚) = 𝒆^𝒙+𝒄 𝑒^𝑥 + 𝑒^(−𝑦) = C So, the correct answer is (a)