Ex 9.3, 12 - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Ex 9.3
Ex 9.3, 2
Ex 9.3, 3
Ex 9.3, 4 Important
Ex 9.3, 5
Ex 9.3, 6
Ex 9.3, 7 Important
Ex 9.3, 8
Ex 9.3, 9 Important
Ex 9.3, 10 Important
Ex 9.3, 11 Important
Ex 9.3, 12 You are here
Ex 9.3, 13
Ex 9.3, 14
Ex 9.3, 15 Important
Ex 9.3, 16
Ex 9.3, 17 Important
Ex 9.3, 18
Ex 9.3, 19 Important
Ex 9.3, 20 Important
Ex 9.3, 21
Ex 9.3, 22 Important
Ex 9.3, 23 (MCQ)
Last updated at April 16, 2024 by Teachoo
Ex 9.3, 12 Find a particular solution satisfying the given condition : ๐ฅ(๐ฅ^2โ1) ๐๐ฆ/๐๐ฅ=1;๐ฆ=0 When ๐ฅ=2 ๐ฅ(๐ฅ^2โ1) dy = dx dy = ๐ ๐/(๐(๐๐ โ ๐)) Integrating both sides. โซ1โ๐๐ฆ = โซ1โ๐๐ฅ/(๐ฅ(๐ฅ2 โ 1)) ๐ = โซ1โ๐ ๐/(๐(๐ + ๐)(๐ โ ๐)) We can write integrand as ๐/(๐(๐ + ๐)(๐ โ ๐)) = ๐จ/๐ + ๐/(๐ + ๐) + ๐/(๐ โ ๐) By canceling the denominators. 1 = A (x โ 1) (x + 1) B x (x โ 1) + C x (x + 1) Putting x = 0 1 = A (0 โ 1) (0 + 1) + B.0. (0 โ 1) + C.0. (0 + 1) 1 = A (โ1) (1) + B.0 + C.0 1 = โ A A = โ1 Similarly putting x = โ1 1 = A (โ1 โ 1) (โ1 + 1) + B (โ1) (โ1 โ 1) + C(โ1)(โ1 + 1) 1 = A (โ2) (0) + B (โ1) (โ2) + C (โ1) (0) 1 = 0 + 2B + 0 2B = 1 B = ๐/๐ Similarly putting x = 1 1 = A(1 โ 1) (1 + 1) + B.1(1 โ 1) + C(1)(1 + 1) 1 = A (0) (2) + B.1.0 + C.2 2C = 1 C = ๐/๐ Therefore, ๐/(๐(๐ + ๐)(๐ โ ๐)) = (โ๐)/๐ + ๐/(๐(๐ + ๐)) + ๐/(๐(๐ โ ๐)) Now, From (1) y = โซ1โ1/(๐ฅ(๐ฅ + 1)(๐ฅ โ 1)) dx = โ โซ1โ๐/๐ + dx + ๐/๐ โซ1โ๐ ๐/(๐ + ๐) + ๐/๐ โซ1โ๐ ๐/(๐ โ ๐) = log |๐|+ ๐/๐ log |๐+๐| + ๐/๐ log |๐โ๐|+๐ = (โ2)/2 logโก|๐ฅ| + ๐/๐ log |๐+๐|+ ๐/๐ log |๐โ๐|+๐ = 1/2 [โ2 logโกใ|๐ฅ|โ2+๐ฅ๐จ๐ โก|(๐+๐)(๐โ๐)| ใ ]+๐ = 1/2 [logโกใ๐ฅ^(โ2)+logโก|(๐ฅ+1)(๐ฅโ1)| ใ ]+๐ = 1/2 [logโก|๐ฅ^(โ2) (๐ฅ^2โ1)| ]+๐ = ๐/๐ log |(๐^๐ โ ๐)/๐^๐ |+๐ Given that x = 2, y = 0 Substituting values in (1) we get 0 = 1/2 " log " |(2^2โ1)/2^2 |" + C" 0 = 1/2 " log " 3/4 " + C" C = โ๐/๐ " log " ๐/๐ Putting value of c in (1), y = ๐/๐ log |(๐^๐ โ ๐)/๐^๐ | โ ๐/๐ log ๐/๐