Ex 9.3, 7 - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Variable separation - Equation given
Example 20
Misc 13 (MCQ)
Ex 9.3, 3
Ex 9.3, 8
Example 4
Ex 9.3, 7 Important You are here
Example 5
Ex 9.3, 6
Ex 9.3, 2
Misc 4
Example 6
Ex 9.3, 5
Ex 9.3, 14
Ex 9.3, 13
Example 7 Important
Ex 9.3, 16
Ex 9.3, 12
Ex 9.3, 11 Important
Ex 9.3, 1 Important
Ex 9.3, 15 Important
Misc 7 Important
Ex 9.3, 4 Important
Ex 9.3, 9 Important
Misc 6
Ex 9.3, 10 Important
Misc 12 Important
Misc 5 Important
Variable separation - Equation given
Last updated at Dec. 16, 2024 by Teachoo
Ex 9.3, 7 For each of the differential equations in Exercises 1 to 10, find the general solution : ๐ฆ logโกใ๐ฆ ๐๐ฅ โ๐ฅ ๐๐ฆ=0ใ ๐ฆ logโกใ๐ฆ ๐๐ฅ โ๐ฅ ๐๐ฆ=0ใ ๐ฆ logโก๐ฆ ๐๐ฅ=๐ฅ ๐๐ฆ ๐ ๐/๐ = ๐ ๐/(๐ ๐ฅ๐จ๐ โก๐ ) Integrating both sides โซ1โใ๐๐ฆ/(๐ฆ logโก๐ฆ )= โซ1โ๐๐ฅ/๐ฅใ โซ1โ๐ ๐/(๐ ๐๐๐โก๐ )=๐ฅ๐จ๐ โกใ|๐|ใ+๐ช Putting t = log y dt = 1/๐ฆ dy dy = y dt Hence, our equation becomes โซ1โ(๐ฆ ๐๐ก)/(๐ฆ.๐ก)=logโกใ|๐ฅ|ใ+๐ถ โซ1โ๐๐ก/๐ก=logโกใ|๐ฅ|ใ+๐ถ ๐๐๐ |๐ก|=๐๐๐โกใ|๐ฅ|ใ+๐ถ ๐๐๐ |๐|=๐๐๐โก|๐|+๐ฅ๐จ๐ โก๐ช Putting t = log y log (log y) = log x + log c log (log y) = log cx (Using log ab = log ๐ + log b) Cancelling log log y = cx y = ecx