Slide1.JPG

Slide2.JPG
Slide3.JPG

Go Ad-free

Transcript

Ex 9.3, 1 For each of the differential equations in Exercises 1 to 10, find the general solution : 𝑑𝑦/𝑑π‘₯=(1 βˆ’ cos⁑π‘₯)/(1 + cos⁑π‘₯ ) 𝑑𝑦/𝑑π‘₯ = (1 βˆ’ cos⁑π‘₯)/(1 + cos⁑π‘₯ ) We know that cos 2x = 2cos2 x βˆ’ 1 Putting x = π‘₯/2 cos 2π‘₯/2 = 2 cos2 π‘₯/2 βˆ’ 1 cos x = 2 cos2 π‘₯/2 βˆ’ 1 1 + cos x = 2cos2 π‘₯/2 We know cos 2x = 1 βˆ’ 2sin2 x Putting x = π‘₯/2 cos2 2π‘₯/2 = 1 βˆ’ 2 sin2 π‘₯/2 cos x = 1 βˆ’ 2sin2 π‘₯/2 1 βˆ’ cos x = 2sin2 π‘₯/2 Putting values in equation π’…π’š/𝒅𝒙 = (𝟐 〖〖𝐬𝐒𝐧〗^𝟐 〗⁑〖𝒙/πŸγ€— )/(𝟐 γ€–γ€–πœπ¨π¬γ€—^𝟐 〗⁑〖𝒙/πŸγ€— ) 𝑑𝑦 = (γ€–sin^2 〗⁑〖π‘₯/2γ€— )/cos^(2 )⁑〖π‘₯/2γ€— 𝑑π‘₯ 𝑑𝑦 = tan2 π‘₯/2 𝑑π‘₯ Putting tan2 π‘₯/2 = sec2 π‘₯/2 βˆ’ 1 π’…π’š = ("sec2 " 𝒙/𝟐 " βˆ’ 1" )𝒅𝒙 Integrating both sides We know that tan2 x + 1 = sec2 x tan2 x = sec2 x βˆ’ 1 Putting x = π‘₯/2 tan2 𝒙/𝟐 = sec2 𝒙/𝟐 βˆ’ 1 ∫1β–’π’…π’š = ∫1β–’(π’”π’†π’„πŸ 𝒙/πŸβˆ’πŸ) 𝒅𝒙 y = ∫1▒〖𝑠𝑒𝑐2 π‘₯/2 𝑑π‘₯βˆ’ ∫1▒𝑑π‘₯γ€— y = 𝟏/(𝟏/𝟐) tan 𝒙/𝟐 βˆ’ x + C y = 2 tan π‘₯/2 βˆ’ x + c y = 2 tan π‘₯/2 βˆ’ x + C y = 𝟐 tan 𝒙/𝟐 βˆ’ x + C is the general solution

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo