Slide24.JPG

Slide25.JPG
Slide26.JPG

Go Ad-free

Transcript

Misc 11 Find a particular solution of the differential equation 𝑑𝑦/𝑑π‘₯+𝑦 cot⁑〖π‘₯=4π‘₯ π‘π‘œπ‘ π‘’π‘ π‘₯ (π‘₯β‰ 0) ,γ€— given that 𝑦=0 when π‘₯=πœ‹/2Given 𝑑𝑦/𝑑π‘₯+𝑦 cot⁑〖π‘₯=4π‘₯ π‘π‘œπ‘ π‘’π‘ π‘₯ γ€— This of the form 𝑑𝑦/𝑑π‘₯+𝑃𝑦=𝑄 where P = cot x & Q = 4x cosec x IF = 𝑒^∫1▒𝑃𝑑π‘₯ IF = 𝒆^∫1β–’πœπ¨π­β‘γ€–π’™ 𝒅𝒙〗 IF = 𝑒^(log⁑(sin⁑〖π‘₯)γ€— ) IF = sin x Solution is y (IF) = ∫1β–’γ€–(𝑄×𝐼.𝐹)𝑑π‘₯+𝑐 γ€— y sin x = ∫1β–’γ€–πŸ’π’™ 𝒄𝒐𝒔𝒆𝒄 𝒙 π’”π’Šπ’β‘π’™ 𝒅𝒙+𝒄 γ€— y sin x = ∫1β–’γ€–4π‘₯ 1/sin⁑π‘₯ sin⁑π‘₯ 𝑑π‘₯+𝑐 γ€— y sin x = ∫1β–’γ€–4π‘₯ 𝑑π‘₯+𝑐 γ€— y sin x = (4π‘₯^2)/2+𝑐 y sin x = 2x2 + C Given that π’š=𝟎 when 𝒙=𝝅/𝟐 Put x = πœ‹/2 & y = 0 in (1) 0 Γ— sin πœ‹/2 = 2 (πœ‹/2)^2+𝐢 0 = 2 (γ€–πœ‹/4γ€—^2 ) + C 0 = γ€–πœ‹/2γ€—^2 + C C = γ€–βˆ’π…γ€—^𝟐/𝟐 Putting value of C in (1) y sin x = 2x2 + c y sin x = 2𝒙^𝟐 βˆ’ 〖𝝅/πŸγ€—^𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo