Slide21.JPG

Slide22.JPG
Slide23.JPG

Go Ad-free

Transcript

Misc 10 Solve the differential equation [𝑒^(βˆ’2√π‘₯)/√π‘₯βˆ’π‘¦/√π‘₯] 𝑑π‘₯/𝑑𝑦=1(π‘₯β‰ 0)[𝑒^(βˆ’2√π‘₯)/√π‘₯βˆ’π‘¦/√π‘₯] 𝑑π‘₯/𝑑𝑦=1 𝑒^(βˆ’2√π‘₯)/√π‘₯βˆ’ 𝑦/√π‘₯ =𝑑𝑦/𝑑π‘₯ π’…π’š/𝒅𝒙 + π’š/βˆšπ’™ = 𝒆^(βˆ’πŸβˆšπ’™)/βˆšπ’™ Differential equation is of the form 𝑑𝑦/𝑑π‘₯ + Py = Q where P = 𝟏/βˆšπ’™ & Q = 𝒆^(βˆ’πŸβˆšπ’™)/βˆšπ’™ IF. = e∫1β–’"pdx" Finding ∫1▒〖𝑷 𝒅𝒙〗 ∫1▒〖𝑷 𝒅𝒙=∫1▒𝒅𝒙/βˆšπ’™ γ€— ∫1▒〖𝑃 𝑑π‘₯=∫1β–’γ€–π‘₯^((βˆ’1)/2) 𝑑π‘₯γ€— γ€— ∫1▒〖𝑃 𝑑π‘₯=∫1β–’γ€–(π‘₯ (βˆ’1)/2 + 1)/((βˆ’1)/2 + 1) 𝑑π‘₯γ€— γ€— ∫1▒〖𝑃 𝑑π‘₯=2π‘₯^(1/2) γ€—= 2√π‘₯ ∴ IF = 𝒆^(πŸβˆšπ’™) Solution is y (IF) = ∫1β–’γ€–(𝑄×𝐼𝐹)𝑑π‘₯+𝑐〗 y𝒆^(πŸβˆšπ’™) = ∫1β–’γ€–(𝒆^(βˆ’πŸβˆšπ’™)/βˆšπ’™Γ—π’†^(πŸβˆšπ’™) )𝒅𝒙+𝒄〗 y𝑒^(2√π‘₯) = ∫1▒〖𝑑π‘₯/√π‘₯+𝑐〗 y𝑒^(2√π‘₯) = ∫1β–’γ€–1/√π‘₯ 𝑑π‘₯+𝑐〗 y𝑒^(2√π‘₯) = ∫1β–’γ€–π‘₯^((βˆ’1)/2) 𝑑π‘₯+𝑐〗 y𝑒^(2√π‘₯) = ∫1β–’γ€–(π‘₯^(βˆ’1/2 + 1) )/(βˆ’1/2 + 1)+𝑐〗 "y" 𝑒^(2√π‘₯) " = "2π‘₯^(1/2) + C "y" 𝒆^(πŸβˆšπ’™) " = "2βˆšπ’™ + C

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo