Slide10.JPG

Slide11.JPG
Slide12.JPG
Slide13.JPG

Go Ad-free

Transcript

Misc 7 Find the particular solution of the differential equation (1 + 𝑒^2π‘₯) dy + (1 + 𝑦^2) ex dx = 0, given that y = 1 when x = 0. Given (1 + e2x) dy + (1 + y2)𝑒^π‘₯ dx = 0 (1 + e2x) dy = βˆ’(1 + y2)𝑒^π‘₯ dx 𝑑𝑦/𝑑π‘₯ = (βˆ’(1 + 𝑦^2 ).𝑒^π‘₯)/(1 + 𝑒2π‘₯) π’…π’š/(𝟏 + π’š)^𝟐 = (βˆ’π’†^𝒙 𝒅𝒙)/(𝟏 + π’†πŸπ’™) Integrating both sides ∫1▒𝑑𝑦/γ€–(1 + 𝑦)γ€—^2 = ∫1β–’(𝑒π‘₯ 𝑑π‘₯)/γ€–1 + 𝑒〗^2π‘₯ Let t = ex Diff w.r.t.x 𝑑𝑑/𝑑π‘₯=𝑒^π‘₯ 𝑑𝑑/𝑒π‘₯= 𝑑π‘₯ ∴ Our equation becomes ∫1▒𝑑𝑦/γ€–1 + 𝑦〗^2 = βˆ’βˆ«1β–’γ€–(𝑒π‘₯ )/(1 + 𝑑^2 ) (𝑑𝑑 )/(𝑒π‘₯ )γ€— ∫1β–’π’…π’š/γ€–πŸ + π’šγ€—^𝟐 = βˆ’βˆ«1β–’γ€–(𝒅𝒕 )/(𝟏 + 𝒕^𝟐 ) γ€— tan^(βˆ’1)⁑𝑦=βˆ’tan^(βˆ’1)⁑𝑑+𝐢 Putting back value of t = ex 〖𝒕𝒂𝒏〗^(βˆ’πŸ)β‘π’š=βˆ’γ€–π’•π’‚π’γ€—^(βˆ’πŸ)⁑(𝒆^𝒙 )+π‘ͺ Given that y = 1 when x = 0 Put y = 1 and x = 0 in equation (2) tan^(βˆ’1)⁑〖(1)γ€—=βˆ’tan^(βˆ’1)⁑(𝒆^𝟎 )+𝐢 tan^(βˆ’1)⁑1=βˆ’tan^(βˆ’1)⁑𝟏+𝐢 tan^(βˆ’1)⁑1+tan^(βˆ’1)⁑1=𝐢 2 〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑𝟏=𝐢 2 Γ— 𝝅/πŸ’=𝐢 2 Γ— πœ‹/2=𝐢 C = 𝝅/𝟐. Putting value of C in (2) tan^(βˆ’1)⁑𝑦=βˆ’tan^(βˆ’1)⁑(𝑒^π‘₯ )+𝐢 tan^(βˆ’1)⁑𝑦=βˆ’tan^(βˆ’1)⁑(𝑒^π‘₯ )+" " πœ‹/2 〖𝒕𝒂𝒏〗^(βˆ’πŸ)β‘π’š+〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑(𝒆^𝒙 )=" " 𝝅/𝟐 is the required particular solution.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo