Slide3.JPG

Slide4.JPG
Slide5.JPG
Slide6.JPG

Go Ad-free

Transcript

Misc 5 Show that the general solution of the differential equation 𝑑𝑦/𝑑π‘₯+(𝑦^2+𝑦+1)/(π‘₯^2+π‘₯+1)=0 is given by (π‘₯+𝑦+1)=A(1βˆ’π‘₯βˆ’π‘¦βˆ’2π‘₯𝑦), where A is parameter. 𝑑𝑦/𝑑π‘₯+(𝑦^2 + 𝑦 + 1)/(π‘₯^2 + π‘₯ + 1) = 0 𝑑𝑦/𝑑π‘₯=(βˆ’(𝑦^2 + 𝑦 + 1))/(π‘₯^2 + π‘₯ + 1) π’…π’š/(π’š^𝟐 + π’š + 𝟏)=(βˆ’π’…π’™)/(𝒙^𝟐 + 𝒙 + 𝟏) 𝑑𝑦/(𝑦^2 +2(1/2)𝑦 + (1/2)^2βˆ’ (1/2)^2+ 1)=(βˆ’π‘‘π‘₯)/(π‘₯^2 + 2(1/2)π‘₯ + (1/2)^2βˆ’ (1/2)^2+ 1) 𝑑𝑦/((𝑦 + 1/2)^2+ 3/4)=(βˆ’π‘‘π‘₯)/((π‘₯ + 1/2)^2+ 3/4) π’…π’š/((π’š + 𝟏/𝟐)^𝟐+ (βˆšπŸ‘/𝟐)^𝟐 )=(βˆ’π’…π’™)/((𝒙 + 𝟏/𝟐)^𝟐+ (βˆšπŸ‘/𝟐)^𝟐 ) Integrating both sides ∫1▒𝑑𝑦/((𝑦 + 1/2)^2 +(√3/2)^2 ) = βˆ’ ∫1▒𝑑π‘₯/((π‘₯ + 1/2)^2 +(√3/2)^2 ) 𝟐/βˆšπŸ‘ tanβˆ’1 ((π’š + 𝟏/𝟐)/(βˆšπŸ‘/𝟐)) = (βˆ’πŸ)/βˆšπŸ‘ tanβˆ’1 ((𝒙 + 𝟏/𝟐)/(βˆšπŸ‘/𝟐)) + C 2/√3 ["tanβˆ’1 " ((2𝑦 + 1)/√3)" + tanβˆ’1 " ((2π‘₯ + 1)/√3)] = C (Using tanβˆ’1 A + tanβˆ’1 B = tanβˆ’1 ((𝐴 + 𝐡)/(1 βˆ’ 𝐴𝐡)) ) 2/√3 "tanβˆ’1" ⌈((2𝑦 + 1)/√3 + (2π‘₯ + 1)/√3)/(1 βˆ’ (2𝑦 βˆ’ 1)/√3 Γ—(2π‘₯ + 1)/√3 )βŒ‰=𝐢 "tanβˆ’1" [((2𝑦 + 1 + 2π‘₯ + 1)/√3)/(1 βˆ’ ((2𝑦 + 1)(2π‘₯ + 1))/√3)] = √3/2 𝐢 ((πŸπ’š + 𝟏 + πŸπ’™ + 𝟏)/βˆšπŸ‘)/(𝟏 βˆ’ ((πŸπ’š + 𝟏)(πŸπ’™ + 𝟏))/πŸ‘) = tan (βˆšπŸ‘/𝟐 π‘ͺ) ((2𝑦 + 2π‘₯ +2)/√3)/((3 βˆ’ (2𝑦 + 1)(2π‘₯ + 1))/3) = C1 (√3(2𝑦 + 2π‘₯ + 2))/(3 βˆ’ (4π‘₯𝑦 + 2𝑦 + 2π‘₯ + 1) ) = C 2βˆšπŸ‘ (x + y + 1) = C1 (πŸ‘βˆ’πŸ’π’™π’šβˆ’πŸπ’™βˆ’πŸπ’šβˆ’πŸ) 2√3 (x + y + 1) = C1 (2βˆ’4π‘₯π‘¦βˆ’2π‘₯βˆ’2𝑦) 2√3 (x + y + 1) = C1 Γ— 2 (1βˆ’π‘₯βˆ’π‘¦βˆ’π‘₯𝑦) βˆšπŸ‘ (x + y + 1) = C1 (1 βˆ’ x βˆ’ y βˆ’ 2xy) is the required general solution

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo