Example 21 - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Examples
Example 1 (ii) Important
Example 1 (iii) Important
Example 2
Example 3 Important
Example 4
Example 5
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10 Important
Example 11
Example 12 Important
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19
Example 20
Example 21 Important You are here
Example 22 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6
Last updated at April 16, 2024 by Teachoo
Example 21 Solve the differential equation (π₯ ππ¦βπ¦ ππ₯)π¦ π ππ(π¦/π₯)=(π¦ ππ₯+π₯ ππ¦)π₯ cosβ‘(π¦/π₯) (π₯ ππ¦βπ¦ ππ₯)π¦ π ππ(π¦/π₯)=(π¦ ππ₯+π₯ ππ¦)π₯ cosβ‘(π¦/π₯) π₯ π¦ sinβ‘γ(π¦/π₯)ππ¦βπ¦^2 π ππ(π¦/π₯) γ ππ₯=π₯π¦ cosβ‘γ(π¦/π₯)ππ₯+π₯^2 γ cosβ‘(π¦/π₯)ππ¦ [π₯ π¦ sinβ‘γ(π¦/π₯)βπ₯^2 πππ (π¦/π₯) γ ]ππ¦=[π₯π¦ cosβ‘γ(π¦/π₯)+π¦^2 γ sinβ‘(π¦/π₯) ]ππ₯ π π/π π = (ππ ππ¨π¬β‘γ(π/π) + π^π π¬π’π§β‘(π/π) γ)/(ππ π¬π’π§β‘γ(π/π) β π^π πππ(π/π)γ ) Dividing numerator & denominator by x2 ππ¦/ππ₯ = (π¦/π₯ cosβ‘γ(π¦/π₯) + (π¦/π₯)^2 cosβ‘(π¦/π₯) γ)/(π¦/π₯ sinβ‘γ(π¦/π₯) β cosβ‘(π¦/π₯) γ ) Putting y = vx. Differentiating w.r.t. x π π/π π = π π π/π π + v Putting value of ππ¦/ππ₯ and y in (1) ππ¦/ππ₯ = (π¦/π₯ cosβ‘γ(π¦/π₯) + (π¦/π₯)^2 cosβ‘(π¦/π₯) γ)/(π¦/π₯ sinβ‘γ(π¦/π₯) β cosβ‘(π¦/π₯) γ ) v + (π₯ ππ£)/ππ₯=(π£π₯/π₯ cosβ‘γ(π£π₯/π₯) + (π£^2 π₯^2)/π₯^2 sinβ‘(π£π₯/π₯) γ)/(π£π₯/π₯ sinβ‘γ(π£π₯/π₯) β πππ (π£π₯/π₯)γ ) v + (π π π)/π π = (π ππ¨π¬β‘γπ + π^π π¬π’π§β‘π γ)/(π π¬π’π§β‘γπ β ππ¨π¬β‘π γ ) x ( ππ£)/ππ₯ = (π£ cosβ‘γπ£ + π£^2 sinβ‘π£ γ)/(π£ sinβ‘γπ£ β cosβ‘π£ γ ) β v x ( ππ£)/ππ₯ = (π£ cosβ‘γπ£ + π£^2 sinβ‘γπ£ β π£(π£ sinβ‘γπ£ β cosβ‘γπ£)γ γ γ γ)/(π£ sinβ‘γπ£ β cosβ‘π£ γ ) x ( ππ£)/ππ₯ = (π£ cosβ‘γπ£ + π£^2 sinβ‘γπ£ β π£^2 sin π£γ + π£ cosβ‘π£ γ)/(π£ sinβ‘γπ£ β cosβ‘π£ γ ) ( π π π)/π π = (ππ πππβ‘π)/(π πππβ‘γπ β πππβ‘π γ ) ((π£ sinβ‘γπ£ β cosβ‘π£ γ)/γv cosγβ‘π£ )ππ£=2 ππ₯/π₯ ((π£ sinβ‘π£)/γv cosγβ‘π£ βcosβ‘π£/γv cosγβ‘π£ ) dv = 2 ππ₯/π₯ (πππβ‘πβπ/π) dv = 2 π π/π Integrating both sides β«1βγ(tanβ‘γπ£ β1/π£γ )ππ£=2β«1βππ₯/π₯γ β«1βtanβ‘γπ£ ππ£ β γ β«1βππ£/π£ = 2 β«1βππ₯/π₯ log |πππβ‘π |βπ₯π¨π β‘γ|π|γ = 2 log |π| + log π log |secβ‘π£ |βlogβ‘γ|π£|γ = log |π₯^2 | + log C log |πππβ‘π/π| = log π^π + log π log |secβ‘π£/π£| = log π₯^2 π πππβ‘π/π = π^π π Putting back value of v = π¦/π₯ γsec γβ‘(π¦/π₯)/((π¦/π₯) ) = π₯^2 π secβ‘(π¦/π₯) = (π¦/π₯) π₯^2 π sec (π/π) = C xy