Example 21 - Chapter 9 Class 12 Differential Equations (Important Question)
Last updated at Dec. 16, 2024 by Teachoo
Chapter 9 Class 12 Differential Equations
Ex 9.1, 11 (MCQ) Important
Ex 9.1, 12 (MCQ)
Question 4
Question 7 Important
Question 10 Important
Example 8
Ex 9.3, 14
Example 12 Important
Example 13 Important
Ex 9.4, 8
Ex 9.4, 15
Example 17 Important
Ex 9.5, 7 Important
Ex 9.5, 13
Ex 9.5, 14 Important
Question 6
Example 21 Important You are here
Example 22 Important
Misc 4
Misc 9
Misc 10 Important
Misc 11
Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Example 21 Solve the differential equation (π₯ ππ¦βπ¦ ππ₯)π¦ π ππ(π¦/π₯)=(π¦ ππ₯+π₯ ππ¦)π₯ cosβ‘(π¦/π₯) (π₯ ππ¦βπ¦ ππ₯)π¦ π ππ(π¦/π₯)=(π¦ ππ₯+π₯ ππ¦)π₯ cosβ‘(π¦/π₯) π₯ π¦ sinβ‘γ(π¦/π₯)ππ¦βπ¦^2 π ππ(π¦/π₯) γ ππ₯=π₯π¦ cosβ‘γ(π¦/π₯)ππ₯+π₯^2 γ cosβ‘(π¦/π₯)ππ¦ [π₯ π¦ sinβ‘γ(π¦/π₯)βπ₯^2 πππ (π¦/π₯) γ ]ππ¦=[π₯π¦ cosβ‘γ(π¦/π₯)+π¦^2 γ sinβ‘(π¦/π₯) ]ππ₯ π π/π π = (ππ ππ¨π¬β‘γ(π/π) + π^π π¬π’π§β‘(π/π) γ)/(ππ π¬π’π§β‘γ(π/π) β π^π πππ(π/π)γ ) Dividing numerator & denominator by x2 ππ¦/ππ₯ = (π¦/π₯ cosβ‘γ(π¦/π₯) + (π¦/π₯)^2 cosβ‘(π¦/π₯) γ)/(π¦/π₯ sinβ‘γ(π¦/π₯) β cosβ‘(π¦/π₯) γ ) Putting y = vx. Differentiating w.r.t. x π π/π π = π π π/π π + v Putting value of ππ¦/ππ₯ and y in (1) ππ¦/ππ₯ = (π¦/π₯ cosβ‘γ(π¦/π₯) + (π¦/π₯)^2 cosβ‘(π¦/π₯) γ)/(π¦/π₯ sinβ‘γ(π¦/π₯) β cosβ‘(π¦/π₯) γ ) v + (π₯ ππ£)/ππ₯=(π£π₯/π₯ cosβ‘γ(π£π₯/π₯) + (π£^2 π₯^2)/π₯^2 sinβ‘(π£π₯/π₯) γ)/(π£π₯/π₯ sinβ‘γ(π£π₯/π₯) β πππ (π£π₯/π₯)γ ) v + (π π π)/π π = (π ππ¨π¬β‘γπ + π^π π¬π’π§β‘π γ)/(π π¬π’π§β‘γπ β ππ¨π¬β‘π γ ) x ( ππ£)/ππ₯ = (π£ cosβ‘γπ£ + π£^2 sinβ‘π£ γ)/(π£ sinβ‘γπ£ β cosβ‘π£ γ ) β v x ( ππ£)/ππ₯ = (π£ cosβ‘γπ£ + π£^2 sinβ‘γπ£ β π£(π£ sinβ‘γπ£ β cosβ‘γπ£)γ γ γ γ)/(π£ sinβ‘γπ£ β cosβ‘π£ γ ) x ( ππ£)/ππ₯ = (π£ cosβ‘γπ£ + π£^2 sinβ‘γπ£ β π£^2 sin π£γ + π£ cosβ‘π£ γ)/(π£ sinβ‘γπ£ β cosβ‘π£ γ ) ( π π π)/π π = (ππ πππβ‘π)/(π πππβ‘γπ β πππβ‘π γ ) ((π£ sinβ‘γπ£ β cosβ‘π£ γ)/γv cosγβ‘π£ )ππ£=2 ππ₯/π₯ ((π£ sinβ‘π£)/γv cosγβ‘π£ βcosβ‘π£/γv cosγβ‘π£ ) dv = 2 ππ₯/π₯ (πππβ‘πβπ/π) dv = 2 π π/π Integrating both sides β«1βγ(tanβ‘γπ£ β1/π£γ )ππ£=2β«1βππ₯/π₯γ β«1βtanβ‘γπ£ ππ£ β γ β«1βππ£/π£ = 2 β«1βππ₯/π₯ log |πππβ‘π |βπ₯π¨π β‘γ|π|γ = 2 log |π| + log π log |secβ‘π£ |βlogβ‘γ|π£|γ = log |π₯^2 | + log C log |πππβ‘π/π| = log π^π + log π log |secβ‘π£/π£| = log π₯^2 π πππβ‘π/π = π^π π Putting back value of v = π¦/π₯ γsec γβ‘(π¦/π₯)/((π¦/π₯) ) = π₯^2 π secβ‘(π¦/π₯) = (π¦/π₯) π₯^2 π sec (π/π) = C xy