


Chapter 9 Class 12 Differential Equations
Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Transcript
Question 6 From the differential equation of the family of circles in the second quadrant and touching the coordinate axes . Drawing figure : Let C be the family of circles in second quadrant touching coordinate. Let radius be 𝑎 ∴ Center of circle = (−𝑎, 𝑎) Equation representing family C is x−(−𝑎)2+ 𝑦−𝑎2= 𝑎2 x + 𝑎2+ 𝑦−𝑎2= 𝑎2 𝑥2 + 𝑎2 + 2ax + y2 + 𝑎2 − 2𝑎y = 𝑎2 𝑥2 + 𝑦2 + 2ax − 2ay + 2𝑎2 = 𝑎2 𝑥2 + y2 + 2𝑎x − 2𝑎y + 𝑎2 = 0 Differentiate w.r.t x 2x + 2y. 𝑑𝑦𝑑𝑥 + 2𝑎 − 2a 𝑑𝑦𝑑𝑥 + 0 = 0 x + y. 𝑑𝑦𝑑𝑥 + 𝑎 − 𝑎𝑑𝑦𝑑𝑥 = 0 x + y. 𝑑𝑦𝑑𝑥 = − 𝑎 + 𝑎𝑑𝑦𝑑𝑥 x + y 𝑑𝑦𝑑𝑥 = 𝑎 𝑑𝑦𝑑𝑥 −1 𝑎 = 𝑥 + 𝑦 𝑑𝑦𝑑𝑥 𝑑𝑦𝑑𝑥 − 1 𝑎 = 𝒙 + 𝒚 𝒚′ 𝒚′ − 𝟏 Putting value of a in (1) x−(−𝑎)2+ 𝑦−𝑎2= 𝑎2 x− − 𝑥 + 𝑦 𝑦′ 𝑦′ − 12+ 𝑦− 𝑥 + 𝑦 𝑦′ 𝑦′ − 12= 𝑥 + 𝑦 𝑦′ 𝑦′ − 12 x+ 𝑥 + 𝑦 𝑦′ 𝑦′ − 12+ 𝑦− 𝑥 + 𝑦 𝑦′ 𝑦′ − 12= 𝑥 + 𝑦 𝑦′ 𝑦′ − 12 𝑥 𝑦′− 1 + 𝑥 + 𝑦 𝑦′ 𝑦′ − 12+ 𝑦 𝑦′− 1 − 𝑥 − 𝑦 𝑦′ 𝑦′ − 12= 𝑥 + 𝑦 𝑦′ 𝑦′ − 12 𝑥 𝑦′ − 𝑥 + 𝑥 + 𝑦 𝑦′ 𝑦′ − 12+ −𝑥 − 𝑦 𝑦′ − 12= 𝑥 + 𝑦 𝑦′ 𝑦′ − 12 (𝑥 + 𝑦) 𝑦′ 𝑦′ − 12+ −(𝑥 + 𝑦) 𝑦′ − 12= 𝑥 + 𝑦 𝑦′ 𝑦′ − 12 (𝑥 + 𝑦) 2 ( 𝑦′)2+ (𝑥 + 𝑦) 2= 𝑥 + 𝑦 𝑦′2 (𝒙 + 𝒚) 𝟐 ( 𝒚′)𝟐 + 𝟏= 𝒙 + 𝒚 𝒚′𝟐 which is the required differential equation