Example 17 - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Examples
Example 1 (ii) Important
Example 1 (iii) Important
Example 2
Example 3 Important
Example 4
Example 5
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10 Important
Example 11
Example 12 Important
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important You are here
Example 18 Important
Example 19
Example 20
Example 21 Important
Example 22 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6
Last updated at April 16, 2024 by Teachoo
Example 17 Find the particular solution of the differential equation ππ¦/ππ₯+π¦ cotβ‘γπ₯=2π₯+π₯^2 cotβ‘π₯(π₯β 0) γ given that π¦=0 π€βππ π₯=π/2 ππ¦/ππ₯+π¦ cotβ‘γπ₯=2π₯+π₯^2 cotβ‘π₯ γ Differential equation is of the form π π/π π+π·π=πΈ where P = cot x & Q = 2x + x2 cot x IF = π^β«1βγπ ππ₯γ IF = π^β«1βγππ¨πβ‘π π πγ IF = γπ^logβ‘sinβ‘π₯ γ^" " IF = sin x Solution is y (IF) =β«1βγ(πΓπΌπΉ) ππ₯+πγ y sin x = β«1βγπ¬π’π§β‘πΓ(ππ+π^(π ) ππ¨πβ‘π ) π πγ + C y sin x = β«1βγ(2π₯ sinβ‘π₯+π₯^(2 ) sinβ‘γπ₯ cotβ‘π₯ γ ) ππ₯γ + C y sinβ‘π₯ = β«1βγ2π₯ sinβ‘π₯ ππ₯+γ β«1βγπ₯^2 sinβ‘π₯ cotβ‘π₯ ππ₯+γ πΆ y sinβ‘π₯ = 2β«1βγπ¬π’π§β‘π (π) π πγ+β«1βγπ₯^2 sinβ‘π₯ cotβ‘π₯ ππ₯+γ πΆ Integrating by parts with β«1βγπ(π₯) π(π₯) ππ₯=π(π₯) β«1βγπ(π₯) ππ₯ ββ«1βγ[π^β² (π₯) β«1βγπ(π₯) ππ₯] ππ₯γγγγ Take f (x) = sin x & g (x) = π₯ y sinβ‘π₯ = 2 [π¬π’π§β‘π β«1βγπ π πβγ β«1βγ[πππβ‘γπ β«1βγπ π πγ γ ] π πγ] + β«1βγπ₯^2 sinβ‘π₯ γ cotβ‘π₯ dx + C y sinβ‘π₯ = 2 [sinβ‘π₯ [π₯^2/2]ββ«1βγπππβ‘γπ γ [π₯^2/2]π πγ] + β«1βγπ₯^2 sinβ‘π₯ γ cotβ‘π₯ dx y sin x = x2sin x β β«1βπ^π cos x dx + β«1βγπ^π πππβ‘π γ πππβ‘π dx + C y sin x = x2sin x β β«1βπ₯^2 cos x dx + β«1βγπ₯^2 sinβ‘π₯ γΓcosβ‘π₯/sinβ‘π₯ dx + C y sin x = x2sin x β β«1βπ₯^2 cos x dx + β«1βγπ₯^2 cosβ‘π₯ γ dx + C y sin x = x2 sin x + C Given that y = 0 when x = π/2 Putting π=π /π and y = 0 in (1) (0) sin π/2=(π/2)^2 sinβ‘γ(π/2)+Cγ 0 =π^2/4 (1)+C γβπ γ^π/π=π Putting value in C in (1) y sin x = x2 sin x + C y sin x = π^π πππβ‘γπ βγ π ^π/π Dividing both sides by sin x (π¦ sinβ‘π₯)/sinβ‘π₯ =(π₯^2 sinβ‘π₯)/sinβ‘π₯ βπ^2/(4 sinβ‘π₯ ) π=π^πβπ ^π/γπ π¬π’π§γβ‘π where sinβ‘γπ₯β 0γ y sinβ‘π₯ = 2 [π¬π’π§β‘π β«1βγπ π πβγ β«1βγ[πππβ‘γπ β«1βγπ π πγ γ ] π πγ] + β«1βγπ₯^2 sinβ‘π₯ γ cotβ‘π₯ dx + C