Example 17 - Chapter 9 Class 12 Differential Equations (Important Question)
Last updated at April 16, 2024 by Teachoo
Chapter 9 Class 12 Differential Equations
Ex 9.1, 11 (MCQ) Important
Ex 9.1, 12 (MCQ)
Question 4
Question 7 Important
Question 10 Important
Example 8
Ex 9.3, 14
Example 12 Important
Example 13 Important
Ex 9.4, 8
Ex 9.4, 15
Example 17 Important You are here
Ex 9.5, 7 Important
Ex 9.5, 13
Ex 9.5, 14 Important
Question 6
Example 21 Important
Example 22 Important
Misc 4
Misc 9
Misc 10 Important
Misc 11
Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Example 17 Find the particular solution of the differential equation ππ¦/ππ₯+π¦ cotβ‘γπ₯=2π₯+π₯^2 cotβ‘π₯(π₯β 0) γ given that π¦=0 π€βππ π₯=π/2 ππ¦/ππ₯+π¦ cotβ‘γπ₯=2π₯+π₯^2 cotβ‘π₯ γ Differential equation is of the form π π/π π+π·π=πΈ where P = cot x & Q = 2x + x2 cot x IF = π^β«1βγπ ππ₯γ IF = π^β«1βγππ¨πβ‘π π πγ IF = γπ^logβ‘sinβ‘π₯ γ^" " IF = sin x Solution is y (IF) =β«1βγ(πΓπΌπΉ) ππ₯+πγ y sin x = β«1βγπ¬π’π§β‘πΓ(ππ+π^(π ) ππ¨πβ‘π ) π πγ + C y sin x = β«1βγ(2π₯ sinβ‘π₯+π₯^(2 ) sinβ‘γπ₯ cotβ‘π₯ γ ) ππ₯γ + C y sinβ‘π₯ = β«1βγ2π₯ sinβ‘π₯ ππ₯+γ β«1βγπ₯^2 sinβ‘π₯ cotβ‘π₯ ππ₯+γ πΆ y sinβ‘π₯ = 2β«1βγπ¬π’π§β‘π (π) π πγ+β«1βγπ₯^2 sinβ‘π₯ cotβ‘π₯ ππ₯+γ πΆ Integrating by parts with β«1βγπ(π₯) π(π₯) ππ₯=π(π₯) β«1βγπ(π₯) ππ₯ ββ«1βγ[π^β² (π₯) β«1βγπ(π₯) ππ₯] ππ₯γγγγ Take f (x) = sin x & g (x) = π₯ y sinβ‘π₯ = 2 [π¬π’π§β‘π β«1βγπ π πβγ β«1βγ[πππβ‘γπ β«1βγπ π πγ γ ] π πγ] + β«1βγπ₯^2 sinβ‘π₯ γ cotβ‘π₯ dx + C y sinβ‘π₯ = 2 [sinβ‘π₯ [π₯^2/2]ββ«1βγπππβ‘γπ γ [π₯^2/2]π πγ] + β«1βγπ₯^2 sinβ‘π₯ γ cotβ‘π₯ dx y sin x = x2sin x β β«1βπ^π cos x dx + β«1βγπ^π πππβ‘π γ πππβ‘π dx + C y sin x = x2sin x β β«1βπ₯^2 cos x dx + β«1βγπ₯^2 sinβ‘π₯ γΓcosβ‘π₯/sinβ‘π₯ dx + C y sin x = x2sin x β β«1βπ₯^2 cos x dx + β«1βγπ₯^2 cosβ‘π₯ γ dx + C y sin x = x2 sin x + C Given that y = 0 when x = π/2 Putting π=π /π and y = 0 in (1) (0) sin π/2=(π/2)^2 sinβ‘γ(π/2)+Cγ 0 =π^2/4 (1)+C γβπ γ^π/π=π Putting value in C in (1) y sin x = x2 sin x + C y sin x = π^π πππβ‘γπ βγ π ^π/π Dividing both sides by sin x (π¦ sinβ‘π₯)/sinβ‘π₯ =(π₯^2 sinβ‘π₯)/sinβ‘π₯ βπ^2/(4 sinβ‘π₯ ) π=π^πβπ ^π/γπ π¬π’π§γβ‘π where sinβ‘γπ₯β 0γ y sinβ‘π₯ = 2 [π¬π’π§β‘π β«1βγπ π πβγ β«1βγ[πππβ‘γπ β«1βγπ π πγ γ ] π πγ] + β«1βγπ₯^2 sinβ‘π₯ γ cotβ‘π₯ dx + C