Example 14 - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Examples
Example 1 (ii) Important
Example 1 (iii) Important
Example 2
Example 3 Important
Example 4
Example 5
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10 Important
Example 11
Example 12 Important
Example 13 Important
Example 14 You are here
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19
Example 20
Example 21 Important
Example 22 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6
Last updated at April 16, 2024 by Teachoo
Example 14 Find the general solution of the differential equation ππ¦/ππ₯βπ¦=cosβ‘π₯ Differential equation is of the form π π/π π+π·π=πΈ where P = β1 & Q = cos x Finding Integrating Factor IF = e^β«1βπππ₯ IF = e^(ββ«1β1ππ₯) IF = π^(βπ) Solution is y(IF) = β«1βγ(πΓπΌπΉ) ππ₯+πγ ππ^(βπ) = β«1βπ^(βπ) ππ¨π¬β‘γπ+πγ Let I = β«1βπ^(βπ) πππβ‘γπ π πγ I = cos x β«1βγπ^(βπ₯) ππ₯γβ β«1β[βsinβ‘γπ₯β«1βγπ^(βπ₯) ππ₯γγ ]ππ₯ I = γβπγ^(βπ₯)cos x ββ«1βγβsinβ‘γπ₯ (βπ^(βπ₯) γ)γ ππ₯ I = βeβx cos x β β«1βγπ^(βπ) πππβ‘γπ π πγ γ Integrating by parts with β«1βγπ(π₯) π(π₯) ππ₯=π(π₯) β«1βγπ(π₯) ππ₯ ββ«1βγ[π^β² (π₯) β«1βγπ(π₯) ππ₯] ππ₯γγγγ Take f (x) = cos x & g (x) = π^"βx" I = βeβx cos x β [sinβ‘γπ₯ β«1βγπ^(βπ₯) ππ₯γββ«1βγ(cosγβ‘γπ₯ β«1βγπ^(βπ₯) ππ₯γ)γ "dx " γ ] Integrating by parts with β«1βγπ(π₯) π(π₯) ππ₯=π(π₯) β«1βγπ(π₯) ππ₯ ββ«1βγ[π^β² (π₯) β«1βγπ(π₯) ππ₯] ππ₯γγγγ Take f (x) = sin x g (x) = eβx I = βeβx cos x β [βπ^(βπ) πππβ‘γπ ββ«1βγβπ^(βπ) πππβ‘π π πγ " " γ ] I = βeβx cos x β [βπ^(βπ₯) sinβ‘γπ₯+β«1βγπ^(βπ₯) cosβ‘π₯ ππ₯γ " " γ ] I = βeβx cos x + π^(βπ₯) sinβ‘γπ₯ββ«1βγπ^(βπ) πππβ‘π π πγ " " γ I = eβx (sin x β cos x) β I 2I = eβx (sin x β cos x) I = π^(βπ)/π (sin x β cos x) From (1) y π^(βπ₯) = β«1βγπ^(βπ₯) cosβ‘γπ₯+πγ γ y π^(βπ₯) = π^(βπ₯)/2 (sin x β cos x) + c y = π/π (sin x β cos x) + cπ^π