Example 11 - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Examples
Example 1 (ii) Important
Example 1 (iii) Important
Example 2
Example 3 Important
Example 4
Example 5
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10 Important
Example 11 You are here
Example 12 Important
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19
Example 20
Example 21 Important
Example 22 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6
Last updated at April 16, 2024 by Teachoo
Example 11 Show that the differential equation π₯βπππ (π¦/π₯)=π¦ πππ (π¦/π₯)+π₯ is homogeneous and solve it.Step 1: Find ππ¦/ππ₯ π₯ πππ (π¦/π₯) ππ¦/ππ₯=π¦ cosβ‘(π¦/π₯)+π₯ π π/π π=(π ππ¨π¬β‘ (π/π) + π)/(π ππ¨π¬β‘(π/π) ) Step 2: Put F(π₯ ,π¦)=ππ¦/ππ₯ & find F(ππ₯ ,ππ¦) F(π₯ ,π¦)=(π¦ cosβ‘ (π¦/π₯) + π₯)/(π₯ cosβ‘(π¦/π₯) ) Finding F(ππ ,ππ) F(ππ₯ ,ππ¦)=((ππ¦)πππ (ππ¦/ππ₯) + ππ₯)/((ππ¦) . cosβ‘(ππ¦/ππ₯) ) =(ππ¦ πππ (π¦/π₯) + ππ₯)/(ππ¦ cosβ‘(π¦/π₯) ) =π(π¦ πππ (π¦/π₯) + π₯)/(π π₯ cosβ‘(π¦/π₯) ) =(π¦ πππ (π¦/π₯) + π₯)/( π₯ cosβ‘(π¦/π₯) ) = F (π , π) So , F(ππ₯ ,ππ¦)= F(π₯ , π¦) = πΒ° F(π₯ , π¦) Thus , F(π₯ , π¦) is a homogeneous function of degree zero. Therefore, the given differential equation is homogeneous differential equation Step 3: Solving ππ¦/ππ₯ by Putting π¦=π£π₯ ππ¦/ππ₯=(π¦ πππ (π¦/π₯) + π₯)/(π₯ cosβ‘(π¦/π₯) ) Put π=ππ So, ππ¦/ππ₯=π(π£π₯) =ππ£/ππ₯ . π₯+π£ ππ₯/ππ₯ =ππ£/ππ₯ π₯+π£ Putting values of ππ¦/ππ₯ and y = vx in (1) i.e. ππ¦/ππ₯ = (π¦ πππ (π¦/π₯)+π₯)/(π₯ cosβ‘(π¦/π₯) ) π π/π π π+π=((ππ) πππ(ππ/π) + π)/(π ππ¨π¬β‘(ππ/π) ) ππ£/ππ₯ π₯+π£=(π£π₯ πππ (π£) + π₯)/(π₯ cosβ‘π£ ) ππ£/ππ₯ π₯+π£=π₯(π£ cosβ‘γπ£ +1γ )/(π₯ cosβ‘π£ ) ππ£/ππ₯ π₯+π£=(π£ cosβ‘γπ£ +1γ)/cosβ‘π£ ππ£/ππ₯ π₯=(π£ cosβ‘γπ£ + 1γ)/cosβ‘π£ βπ£ ππ£/ππ₯ π₯=(π£ cosβ‘γπ£ + 1γ βπ£ cosβ‘π£)/cosβ‘π£ ππ£/ππ₯ π₯= 1/cosβ‘π£ πππβ‘π π π=π π/π Integrating Both Sides β«1βcosβ‘γπ£ ππ£=β«1βππ₯/π₯γ sinβ‘γπ£=logβ‘|π₯|+π1γ Putting π=π/π & t ππ=π₯π¨π β‘π π ππ π¦/π₯=logβ‘γ|π₯|+logβ‘|π| γ πππ π/π=πππβ‘|ππ|