Example 11 - Chapter 9 Class 12 Differential Equations
Last updated at Dec. 16, 2024 by Teachoo
Solving homogeneous differential equation
Ex 9.4, 16 (MCQ)
Ex 9.4, 2
Ex 9.4, 15
Ex 9.4, 4 Important
Example 11 You are here
Ex 9.4, 14 Important
Ex 9.4, 13
Ex 9.4, 8
Ex 9.4, 7 Important
Example 21 Important
Ex 9.4, 6 Important
Ex 9.4, 5
Example 13 Important
Ex 9.4, 9
Ex 9.4, 12 Important
Ex 9.4, 1 Important
Ex 9.4, 3
Ex 9.4, 11
Example 10 Important
Misc 3 Important
Example 12 Important
Ex 9.4, 10 Important
Misc 8 Important
Misc 9
Solving homogeneous differential equation
Last updated at Dec. 16, 2024 by Teachoo
Example 11 Show that the differential equation π₯βπππ (π¦/π₯)=π¦ πππ (π¦/π₯)+π₯ is homogeneous and solve it.Step 1: Find ππ¦/ππ₯ π₯ πππ (π¦/π₯) ππ¦/ππ₯=π¦ cosβ‘(π¦/π₯)+π₯ π π/π π=(π ππ¨π¬β‘ (π/π) + π)/(π ππ¨π¬β‘(π/π) ) Step 2: Put F(π₯ ,π¦)=ππ¦/ππ₯ & find F(ππ₯ ,ππ¦) F(π₯ ,π¦)=(π¦ cosβ‘ (π¦/π₯) + π₯)/(π₯ cosβ‘(π¦/π₯) ) Finding F(ππ ,ππ) F(ππ₯ ,ππ¦)=((ππ¦)πππ (ππ¦/ππ₯) + ππ₯)/((ππ¦) . cosβ‘(ππ¦/ππ₯) ) =(ππ¦ πππ (π¦/π₯) + ππ₯)/(ππ¦ cosβ‘(π¦/π₯) ) =π(π¦ πππ (π¦/π₯) + π₯)/(π π₯ cosβ‘(π¦/π₯) ) =(π¦ πππ (π¦/π₯) + π₯)/( π₯ cosβ‘(π¦/π₯) ) = F (π , π) So , F(ππ₯ ,ππ¦)= F(π₯ , π¦) = πΒ° F(π₯ , π¦) Thus , F(π₯ , π¦) is a homogeneous function of degree zero. Therefore, the given differential equation is homogeneous differential equation Step 3: Solving ππ¦/ππ₯ by Putting π¦=π£π₯ ππ¦/ππ₯=(π¦ πππ (π¦/π₯) + π₯)/(π₯ cosβ‘(π¦/π₯) ) Put π=ππ So, ππ¦/ππ₯=π(π£π₯) =ππ£/ππ₯ . π₯+π£ ππ₯/ππ₯ =ππ£/ππ₯ π₯+π£ Putting values of ππ¦/ππ₯ and y = vx in (1) i.e. ππ¦/ππ₯ = (π¦ πππ (π¦/π₯)+π₯)/(π₯ cosβ‘(π¦/π₯) ) π π/π π π+π=((ππ) πππ(ππ/π) + π)/(π ππ¨π¬β‘(ππ/π) ) ππ£/ππ₯ π₯+π£=(π£π₯ πππ (π£) + π₯)/(π₯ cosβ‘π£ ) ππ£/ππ₯ π₯+π£=π₯(π£ cosβ‘γπ£ +1γ )/(π₯ cosβ‘π£ ) ππ£/ππ₯ π₯+π£=(π£ cosβ‘γπ£ +1γ)/cosβ‘π£ ππ£/ππ₯ π₯=(π£ cosβ‘γπ£ + 1γ)/cosβ‘π£ βπ£ ππ£/ππ₯ π₯=(π£ cosβ‘γπ£ + 1γ βπ£ cosβ‘π£)/cosβ‘π£ ππ£/ππ₯ π₯= 1/cosβ‘π£ πππβ‘π π π=π π/π Integrating Both Sides β«1βcosβ‘γπ£ ππ£=β«1βππ₯/π₯γ sinβ‘γπ£=logβ‘|π₯|+π1γ Putting π=π/π & t ππ=π₯π¨π β‘π π ππ π¦/π₯=logβ‘γ|π₯|+logβ‘|π| γ πππ π/π=πππβ‘|ππ|