Example 10 - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Examples
Example 1 (ii) Important
Example 1 (iii) Important
Example 2
Example 3 Important
Example 4
Example 5
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10 Important You are here
Example 11
Example 12 Important
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19
Example 20
Example 21 Important
Example 22 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6
Last updated at April 16, 2024 by Teachoo
Example 10 Show that the differential equation (π₯βπ¦) ππ¦/ππ₯=π₯+2π¦ is homogeneous and solve it.Step 1: Find ππ¦/ππ₯ (π₯βπ¦) ππ¦/ππ₯=π₯+2π¦ π π/π π=((π + ππ)/(π β π)) Step 2: Put F(π₯ , π¦)=ππ¦/ππ₯ & Find F(ππ₯ ,ππ¦) ππ¦/ππ₯=((π₯ + 2π¦)/(π₯ β π¦)) Put F(π₯ , π¦)=((π₯ + 2π¦)/(π₯ β π¦)) Finding F(ππ± ,ππ²) F(ππ₯ ,ππ¦)=(ππ₯ + 2(ππ¦))/(ππ₯ βππ¦) =π(π₯ + 2π¦)/(π (π₯ β π¦) ) =((π₯ + 2π¦))/(π₯ β π¦) = F(π₯ , π¦) Thus , F(ππ₯ ,ππ¦)="F" (π₯ , π¦)" " =πΒ°" F" (π , π)" " Thus , "F" (π₯ , π¦)" is Homogeneous function of degree zero" Therefore, the given Differential Equation is Homogeneous differential Equation Step 3: Solving ππ¦/ππ₯ by Putting π¦=π£π₯ ππ¦/ππ₯=((π₯ + 2π¦)/(π₯ β π¦)) Let π=ππ So , ππ¦/ππ₯=π(π£π₯)/ππ₯ ππ¦/ππ₯=ππ£/ππ₯ . π₯+π£ ππ₯/ππ₯ π π/π π=π π/π π π+π Putting ππ¦/ππ₯ πnd π¦/π₯ ππ (1) ππ¦/ππ₯=(π₯ + 2π¦)/(π₯ β π¦) π π/π π π+π= (π + πππ)/(π β ππ) ππ£/ππ₯ π₯+π£= π₯(1 + 2π£)/π₯(1 β π£) ππ£/ππ₯ π₯+π£= (1 + 2π£)/(1 β π£) ππ£/ππ₯ π₯= (1 + 2π£)/(1 β π£)βπ£ ππ£/ππ₯ . π₯= (1 + 2π£ β π£ (1 β π£))/(1 β π£) ππ£/ππ₯ . π₯= (1 + 2π£ β π£ +γ π£γ^2)/(1 β π£) ππ£/ππ₯ . π₯= (γ π£γ^2 + π£ + 1)/(1 β π£) ππ£/ππ₯ π₯=β((γ π£γ^2 + π£ + 1)/(π£ β 1)) π π((π β π)/(π^(π )+ π + π))=(βπ π)/π Integrating Both Sides β«1βγ(π£ β 1)/(π£^2 + π£ + 1) ππ£=β«1β(βππ₯)/π₯γ β«1βγ(π£ β 1)/(π£^2 + π£ + 1) ππ£=ββ«1βππ₯/π₯γ β«1βγ((π β π) π π)/(π^π + π + π) π πγ=βπ₯π¨π β‘γ|π|γ + π We can write π£^2+π£+1 = π£^2 + 1/2 . 2v + (1/2)^2+1β(1/2)^2 =(π£+1/2)^2 + 1 β 1/4 =(π£+1/2)^2+3/4 Putting π^π+π+π=(π£+1/2)^2+3/4 and πβπ=π£+π/πβπ/πβ1 =(π£+1/2)β3/2 β«1β((π£ + 1/2) β 3/2)/((π£ + 1/2)^2+ 3/4) ππ£=βlogβ‘γ|π₯|+πγ β«1β(π£ + 1/2)/((π£ + 1/2)^2+ 3/4) ππ£β3/2 β«1β1/((π£ + 1/2)^2+ 3/4) ππ£=βlogβ‘γ|π₯|+πγ So, our equation becomes I1 β π/πI2 = βlogβ‘γ|π₯|γ+π Solving π°π πΌ1=β«1β((π£ + 1/2))/((π£ + 1/2)^2+ 3/4) ππ£ Put (π+ π/π)^π+ π/π =π Diff. w.r.t. π£ π((π£ + 1/2)^2+ 3/4)/ππ£=ππ‘/ππ£ 2(π£+1/2)=ππ‘/ππ£ ππ£=ππ‘/2(π£ + 1/2) Putting value of v & dv in I1 πΌ1=β«1β((π£ + 1/2))/π‘ Γππ‘/2(π£ + 1/2) =1/2 β«1βππ‘/π‘ =1/2 logβ‘ |π‘| Putting back π‘=(π£+ 1/2)^2+3/4 =1/2 πππ|(π£+ 1/2)^2+3/4| =1/2 πππ|π£^2+2π£ Γ 1/2 + 1/4 + 3/4| =π/π πππβ‘γ |π^π+π+π|γ Solving π°π π°π=β«1βππ£/((π£ + 1/2)^2+3/4) =β«1βπ π/((π + π/π)^π+(βπ/π)^π ) Using β«1βγππ₯/(π₯^2 + π^2 )=(1 )/π γπ‘ππγ^(β1)β‘γπ₯/πγ γ where x = v + 1/2 and a = β3/2 =1/(β3/2) tan^(β1)β‘γ((π£ + 1/2))/(β3/2)γ =2/β3 tan^(β1)β‘γ2(π£ + 1/2)/β3γ =π/βπ γπππγ^(βπ)β‘((ππ + π)/βπ) From (2) I1 β π/πI2 = βlogβ‘γ|π₯|+πγ 1/2 logβ‘ |π£^2+π£+1|β3/2 Γ2/β3 tan^(β1)β‘((2π£ +1)/β3) = βlogβ‘γ|π₯|+πγ 1/2 logβ‘ |π£^2+π£+1|ββ3 tan^(β1)β‘((2π£ +1)/β3) = βlogβ‘γ|π₯|+πγ Replacing v by (π¦ )/π₯ 1/2 πππ|(π¦/π₯)^2+π¦/π₯+1|ββ3 tan^(β1)β‘((2π¦/π₯ + 1)/β3) = βlogβ‘γ|π₯|+πγ 1/2 πππ|π¦^2/π₯^2 +π¦/π₯+1|ββ3 tan^(β1)β‘((2π¦ + π₯)/(β3 π₯))=βπππ|π₯|+π 1/2 πππ|π¦^2/π₯^2 +π¦/π₯+1|+πππ|π₯|=β3 tan^(β1)β‘((2π¦ + π₯)/(β3 π₯))+π Multiplying Both Sides By 2 πππ|π^π/π^π +π/π+π|+π πππ|π|=π βπ γπππγ^(βπ)β‘((ππ + π)/(βπ π))+ππ πππ|π¦^2/π₯^2 +π¦/π₯+1|+πππ|π₯|^2=2β3 tan^(β1)β‘((2π¦ + π₯)/(β3 π₯))+2π Put 2π=π πππ[|π^π/π^π +π/π+π| Γ |π^π |]=πβπ γπππγ^(βπ)β‘((ππ + π)/(βπ π))+π πππ|γπ₯^2 π¦γ^2/π₯^2 +(π₯^2 π¦)/π₯+π₯^2 |=2β3 tan^(β1)β‘((π₯ + 2π¦)/(β3 π₯))+π πππ|π^π+ππ+π^π |=πβπ γπππγ^(βπ)β‘((π + ππ)/(βπ π))+π