Example 2 - Chapter 9 Class 12 Differential Equations
Last updated at April 16, 2024 by Teachoo
Examples
Example 1 (ii) Important
Example 1 (iii) Important
Example 2 You are here
Example 3 Important
Example 4
Example 5
Example 6
Example 7 Important
Example 8
Example 9 Important
Example 10 Important
Example 11
Example 12 Important
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18 Important
Example 19
Example 20
Example 21 Important
Example 22 Important
Question 1
Question 2
Question 3 Important
Question 4
Question 5
Question 6
Last updated at April 16, 2024 by Teachoo
Example 2 Verify that the function 𝑦=𝑒^(−3𝑥) is a solution of the differential equation (𝑑^2 𝑦)/(𝑑𝑥^2 )+𝑑𝑦/𝑑𝑥−6𝑦=0 𝑦=𝑒^(−3𝑥) 𝒅𝒚/𝒅𝒙=𝑑(𝑒^(−3𝑥) )/𝑑𝑥 𝑑𝑦/𝑑𝑥=〖−3 𝑒〗^(−3𝑥) (𝒅^𝟐 𝒚)/(𝒅𝒙^𝟐 )=𝑑/𝑑𝑥 (𝑑𝑦/𝑑𝑥) =𝑑(〖−3 𝑒〗^(−3𝑥) )/𝑑𝑥 =−3 𝑑(𝑒^(−3𝑥) )/𝑑𝑥 =−3 × (〖−3 𝑒〗^(−3𝑥) ) = 〖9 𝑒〗^(−3𝑥) Now, we have to verify (𝒅^𝟐 𝒚)/(𝒅𝒙^𝟐 )+𝒅𝒚/𝒅𝒙−𝟔𝒚=𝟎 Solving L.H.S (𝑑^2 𝑦)/(𝑑𝑥^2 )+𝑑𝑦/𝑑𝑥−6𝑦 Putting values = 〖9 𝑒〗^(−3𝑥)+(−3𝑒^(−3𝑥) )−6(𝑒^(−3𝑥) ) =〖9 𝑒〗^(−3𝑥)−3𝑒^(−3𝑥)−6𝑒^(−3𝑥) =〖9 𝑒〗^(−3𝑥)−9𝑒^(−3𝑥) =𝟎 = R.H.S ∴ Hence Verified