Slide19.JPG

Slide20.JPG
Slide21.JPG
Slide22.JPG
Slide23.JPG

Go Ad-free

Transcript

Ex 9.5, 15 For each of the differential equations given in Exercises 13 to 15 , find a particular solution satisfy the given condition : 𝑑𝑦/𝑑π‘₯βˆ’3𝑦 cot⁑〖π‘₯=sin⁑〖2π‘₯;𝑦=2γ€— γ€— when π‘₯= πœ‹/2 𝑑𝑦/𝑑π‘₯βˆ’3𝑦 cot⁑〖π‘₯=sin⁑2π‘₯ γ€— 𝑑𝑦/𝑑π‘₯ + (βˆ’3 cot x) y = (sin 2x) Comparing with 𝑑𝑦/𝑑π‘₯ + Py = Q P = βˆ’3 cot x & Q = sin 2x Finding Integrating factor (IF) IF = e^∫1▒𝑝𝑑π‘₯ = e^∫1β–’γ€–βˆ’3 cot⁑〖π‘₯ 𝑑π‘₯γ€— γ€— = e^(βˆ’3∫1β–’γ€–π‘π‘œπ‘‘ π‘₯ 𝑑π‘₯γ€—) = e^(βˆ’3 log⁑|sin⁑π‘₯ | ) = e^log⁑〖|sin⁑π‘₯ |^(βˆ’3) γ€— = e^log⁑〖1/|sin^3⁑π‘₯ | γ€— = e^log⁑|π‘π‘œπ‘ π‘’π‘^3 π‘₯| = 𝒄𝒐𝒔𝒆𝒄^πŸ‘ 𝒙 Solution of differential equation is y Γ— IF = ∫1▒〖𝑄.𝐼𝐹 𝑑π‘₯γ€— Putting values y Γ— cosec3 x = ∫1β–’π’”π’Šπ’β‘γ€–πŸπ’™. 𝒄𝒐𝒔𝒆𝒄^πŸ‘ 𝒙 𝒅𝒙〗 y cosec3x = ∫1β–’(2 sin⁑〖π‘₯ cos⁑π‘₯ γ€—)/sin^3⁑π‘₯ dx y cosec3x = ∫1β–’(2 cos⁑π‘₯)/sin^2⁑π‘₯ dx y cosec3x = 2∫1β–’γ€–cos⁑π‘₯/𝑠𝑖𝑛⁑π‘₯ Γ—1/sin⁑π‘₯ γ€— dx y cosec3x = 2∫1β–’γ€–cot⁑π‘₯ π‘π‘œπ‘ π‘’π‘ π‘₯γ€— dx y cosec3x = 2 (βˆ’cosec x) + C y = (βˆ’2 π‘π‘œπ‘ π‘’π‘ π‘₯)/(π‘π‘œπ‘ π‘’π‘^3 π‘₯) + 𝐢/(π‘π‘œπ‘ π‘’π‘^3 π‘₯) y = (βˆ’2)/(π‘π‘œπ‘ π‘’π‘^2 π‘₯) + 𝐢/(π‘π‘œπ‘ π‘’π‘^3 π‘₯) y = βˆ’2 sin2 x + C sin3 x Putting x = 𝝅/𝟐 , y = 2 in (2) 2 = βˆ’2 sin2 πœ‹/2 + C sin3 πœ‹/2 2 = βˆ’2 (1)2 + C(1)3 2 = βˆ’2 + C C = 2 + 2 C = 4 Put value of C in (3) y = βˆ’2 sin2 x + C sin3 x y = βˆ’2 sin2 x + 4 sin3 x y = 4 sin3 x βˆ’ 2 sin2 x

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo