Slide1.JPG

Slide2.JPG
Slide3.JPG
Slide4.JPG

Go Ad-free

Transcript

Ex 9.5, 10 For each of the differential equation given in Exercises 1 to 12, find the general solution : (π‘₯+𝑦) 𝑑𝑦/𝑑π‘₯=1 Step 1: Put in form 𝑑𝑦/𝑑π‘₯ + Py = Q or 𝑑π‘₯/𝑑𝑦 + P1x = Q1 (x + y) 𝑑𝑦/𝑑π‘₯ = 1 Dividing by (x + y), 𝑑𝑦/𝑑π‘₯ = 1/((π‘₯ + 𝑦)) 𝑑π‘₯/𝑑𝑦 = (π‘₯+𝑦) 𝑑π‘₯/𝑑𝑦 βˆ’ x = 𝑦 𝒅𝒙/π’…π’š + (βˆ’1) x = π’š Step 2: Find P1 and Q1 Comparing (1) with 𝑑π‘₯/𝑑𝑦 + P1x = Q1 P1 = βˆ’1 and Q1 = y Step 3: Find Integrating factor, I.F. I.F. = 𝑒^∫1▒〖𝑃_1 𝑑𝑦〗 = e^∫1β–’γ€–(βˆ’1) 𝑑𝑦〗 = eβˆ’y Step 4 : Solution of the equation x Γ— I.F. = ∫1▒〖𝑄1×𝐼.𝐹. 𝑑𝑦+𝐢〗 Putting values, x Γ— e βˆ’ y = ∫1▒〖𝑦 Γ— 𝑒^(βˆ’π‘¦).γ€— 𝑑𝑦+𝐢 Let I = ∫1β–’γ€–π’š.𝒆^(βˆ’π’š) π’…π’šγ€— Using Integration by parts ∫1▒〖𝑓(𝑦)𝑔(𝑦)𝑑𝑦=𝑓(𝑦) ∫1▒〖𝑔(𝑦)π‘‘π‘¦βˆ’γ€—γ€— ∫1β–’[𝑓′(𝑦)∫1▒𝑔(𝑦)𝑑𝑦] 𝑑𝑦 Taking 𝑓(𝑦) = y and g (y) = 𝑒^(βˆ’π‘¦) = y ∫1▒〖𝒆^(βˆ’π’š) π’…π’šγ€— βˆ’ ∫1β–’[𝒅/π’…π’š π’š ∫1▒〖𝒆^(βˆ’π’š) π’…π’šγ€—] dy = y 𝑒^(βˆ’π‘¦)/(βˆ’1) βˆ’ ∫1β–’γ€–1. γ€— 𝑒^(βˆ’π‘¦)/(βˆ’1) dy. = βˆ’π‘¦.𝑒^(βˆ’π‘¦) + ∫1▒〖𝑒^(βˆ’π‘¦) 𝑑𝑦〗 = βˆ’π‘¦.𝑒^(βˆ’π‘¦) + 𝑒^(βˆ’π‘¦)/(βˆ’1) = βˆ’π‘¦.𝑒^(βˆ’π‘¦) – 𝑒^(βˆ’π‘¦) Putting value of I in (2) x e βˆ’y = ∫1▒〖𝑦×𝑒^(βˆ’π‘¦).γ€— 𝑑𝑦+𝐢 x e βˆ’y = βˆ’π’šπ’†^(βˆ’π’š)βˆ’π’†^(βˆ’π’š)+π‘ͺ Dividing by 𝑒^(βˆ’π‘¦) x = βˆ’y βˆ’ 1 + Cey x + y + 1 = Cey

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo