Slide19.JPG

Slide20.JPG
Slide21.JPG
Slide22.JPG
Slide23.JPG Slide24.JPG

Go Ad-free

Transcript

Ex 9.4, 9 In each of the Exercise 1 to 10, show that the given differential equation is homogeneous and solve each of them. ๐‘ฆ ๐‘‘๐‘ฅ+๐‘ฅ๐‘™๐‘œ๐‘” (๐‘ฆ/๐‘ฅ)๐‘‘๐‘ฆโˆ’2๐‘ฅ ๐‘‘๐‘ฆ=0 Step 1: Find ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ ๐‘ฆ ๐‘‘๐‘ฅ+๐‘ฅ๐‘™๐‘œ๐‘” (๐‘ฆ/๐‘ฅ)๐‘‘๐‘ฆโˆ’2๐‘ฅ ๐‘‘๐‘ฆ=0 dy [๐‘ฅ logโกใ€–(๐‘ฆ/๐‘ฅ)โˆ’2๐‘ฅ ใ€— ] = โˆ’ y dx ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’๐‘ฆ)/(๐‘ฅ logโกใ€–(๐‘ฆ/๐‘ฅ) โˆ’ 2๐‘ฅ ใ€— ) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (โˆ’๐‘ฆ)/(โˆ’๐‘ฅ(2 โˆ’ logโก(๐‘ฆ/๐‘ฅ) ) ) ๐’…๐’š/๐’…๐’™ = (๐’š/๐’™)/(๐Ÿ โˆ’ ๐’๐’๐’ˆโก(๐’š/๐’™) ) Step 2: Putting F(x , y) = ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ and finding F(๐œ†x, ๐œ†y) F(x, y) = (๐‘ฆ/๐‘ฅ)/(2 โˆ’ logโก(๐‘ฆ/๐‘ฅ) ) ๐น(๐œ†๐‘ฅ,๐œ†๐‘ฆ) = (๐œ†๐‘ฆ/๐œ†๐‘ฅ)/(2 โˆ’ logโก(๐œ†๐‘ฆ/๐œ†๐‘ฅ) ) = (๐‘ฆ/๐‘ฅ)/(2 โˆ’ logโก(๐‘ฆ/๐‘ฅ) ) = ๐œ†ยฐ [๐น(๐‘ฅ, ๐‘ฆ)] Thus, F(x, y) is a homogenous equation function of order zero Therefore ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ is a homogenous differential equation Step 3: Solving ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ by putting y = vx Putting y = vx Diff w.r.t.x ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = x ๐‘‘๐‘ฃ/๐‘‘๐‘ฅ + v ๐‘‘๐‘ฅ/๐‘‘๐‘ฅ ๐’…๐’š/๐’…๐’™ = x ๐’…๐’—/๐’…๐’™ + v Putting value of ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ and y = vx in (1) ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘ฆ/๐‘ฅ)/(2 โˆ’ logโก(๐‘ฆ/๐‘ฅ) ) v + (๐’™ ๐’…๐’—)/๐’…๐’™ = (๐’—๐’™/๐’™)/(๐Ÿ โˆ’ ๐’๐’๐’ˆ(๐’—๐’™/๐’™) ) v + (๐‘ฅ ๐‘‘๐‘ฃ)/๐‘‘๐‘ฅ = ๐‘ฃ/(2 โˆ’ logโก๐‘ฃ ) (๐‘ฅ ๐‘‘๐‘ฃ)/๐‘‘๐‘ฅ = ๐‘ฃ/(2 โˆ’ logโก๐‘ฃ ) โˆ’ v (๐‘ฅ ๐‘‘๐‘ฃ)/๐‘‘๐‘ฅ = (๐‘ฃ โˆ’ 2๐‘ฃ + ๐‘ฃ logโก๐‘ฃ)/(2 โˆ’ logโก๐‘ฃ ) (๐‘ฅ ๐‘‘๐‘ฃ)/๐‘‘๐‘ฅ = (๐‘ฃ logโก๐‘ฃ โˆ’ ๐‘ฃ)/(2 โˆ’ใ€– logใ€—โก๐‘ฃ ) (๐Ÿ โˆ’ ๐’๐’๐’ˆโก๐’—)/(๐’— ๐’๐’๐’ˆโก๐’— ) dv = ๐’…๐’™/๐’™ Integrating both sides โˆซ1โ–’(2 โˆ’ logโก๐‘ฃ)/(๐‘ฃ logโก๐‘ฃ โˆ’ ๐‘ฃ) dv = โˆซ1โ–’๐‘‘๐‘ฅ/๐‘ฅ โˆซ1โ–’(2 โˆ’ logโก๐‘ฃ)/(โˆ’๐‘ฃ ใ€–(1 โˆ’ logใ€—โก๐‘ฃ)) dv = log |x| + log c โˆซ1โ–’(1 + 1 โˆ’ logโก๐‘ฃ)/(โˆ’๐‘ฃ ใ€–(1 โˆ’ logใ€—โก๐‘ฃ)) ๐‘‘๐‘ฃ= log |x| + log c โˆซ1โ–’1/((โˆ’๐‘ฃ)(1 โˆ’ logโกใ€–๐‘ฃ)ใ€— ) ๐‘‘๐‘ฃ โˆ’โˆซ1โ–’1/๐‘ฃ ๐‘‘๐‘ฃ = log |x| + log c โˆซ1โ–’1/(๐‘ฃ(logโก๐‘ฃ โˆ’ 1)) ๐‘‘๐‘ฃ โˆ’ โˆซ1โ–’1/๐‘ฃ ๐‘‘๐‘ฃ = log |x| + log c โˆซ1โ–’๐’…๐’—/(๐’—(๐’๐’๐’ˆโกใ€–๐’— โˆ’ ๐Ÿ)ใ€— ) โ€“ log |v| = log |x| + log c Put t = log v โˆ’ 1 dt = 1/๐‘ฃ dv So, our equation becomes โˆซ1โ–’๐‘‘๐‘ก/๐‘ก โˆ’ log v = log x + log c log t โˆ’ log v = log x + log c Putting value of t log (log v โˆ’ 1) โˆ’log v + = log x + log c log (log v โˆ’ 1) = log x + log c + log v log (log v โˆ’ 1) = log Cxv Putting value of v = ๐‘ฆ/๐‘ฅ log ("log " ๐‘ฆ/๐‘ฅโˆ’1)=logโกใ€–๐‘ฅ ๐‘ ๐‘ฆ/๐‘ฅใ€— log ("log " ๐’š/๐’™โˆ’๐Ÿ)=๐’๐’๐’ˆโกใ€– ๐’„๐’šใ€— log ๐‘ฆ/๐‘ฅ โˆ’ 1 = cy cy = log |๐’š/๐’™| โˆ’ 1

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo