Chapter 6 Class 12 Application of Derivatives
Question 7 Important
Question 12
Question 15 Important
Question 26 (MCQ) Important
Example 23 Important
Example 25 Important
Example 26 Important
Example 28 Important
Ex 6.3, 1 (i) Important
Ex 6.3, 5 (i)
Ex 6.3,7 Important
Ex 6.3,11 Important
Ex 6.3,18 Important
Ex 6.3, 20 Important
Ex 6.3,23 Important
Ex 6.3, 26 Important
Ex 6.3,28 (MCQ) Important
Question 14 Important
Example 33 Important
Misc 3 Important
Misc 8 Important
Misc 10 Important You are here
Misc 14 Important
Question 6 (MCQ)
Chapter 6 Class 12 Application of Derivatives
Last updated at Dec. 16, 2024 by Teachoo
Misc 10 Find the points at which the function f given by f (đĽ) = (đĽâ2)^4 (đĽ+1)^3 has (i) local maxima (ii) local minima (iii) point of inflexionf(đĽ)= (đĽâ2)^4 (đĽ+1)3 Finding fâ(đ) fâ(đĽ) = (đ ((đĽ â 2)^4 (đĽ + 1)^3 ))/đđĽ = ă((đĽâ2)^4 )^Ⲡ(đĽ+1)ă^3+((đĽ+1)^3 )^Ⲡ(đĽâ2)^4 = 4(đĽâ2)^3 (đĽ+1)^3+3(đĽ+1)^2 (đĽâ2)^4 = (đĽâ2)^3 (đĽ+1)^2 [4(đĽ+1)+3(đĽâ2)] = (đĽâ2)^3 (đĽ+1)^2 [4đĽ+4+3đĽâ6] = (đâđ)^đ (đ+đ)^đ [đđâđ] Putting fâ(đ)=đ (đĽâ2)^3 (đĽ+1)^2 (7đĽâ2)=0 Hence, đĽ=2 & đĽ=â1 & đĽ=2/7 = 0.28 (đĽâ2)^3 = 0 đĽ â 2 = 0 đ=đ (đĽ+1)^2=0 (đĽ+1)=0 đ = â1 7đĽ â 2 = 0 7đĽ = 2 đ = đ/đ Thus, đĽ=âđ is a point of Inflexion đĽ=đ/đ is point of maxima đĽ=đ is point of minima