Minima/ maxima (statement questions) - Geometry questions
Ex 6.3, 27 (MCQ)
Example 23 Important
Example 29 Important
Example 24
Misc 9 Important
Example 25 Important
Misc 6 Important You are here
Ex 6.3,21
Ex 6.3, 20 Important
Ex 6.3,24 Important
Ex 6.3,25 Important
Ex 6.3, 26 Important
Ex 6.3,22 Important
Misc 7
Misc 8 Important
Ex 6.3,17
Ex 6.3,18 Important
Example 36 Important
Ex 6.3,19 Important
Misc 5 Important
Ex 6.3,23 Important
Misc 12 Important
Misc 14 Important
Example 26 Important
Misc 15 Important
Minima/ maxima (statement questions) - Geometry questions
Last updated at April 16, 2024 by Teachoo
Misc 6 A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth is 2 m and volume is 8 m3. If building of tank costs Rs 70 per sq. meters for the base and Rs 45 per square meter for sides. What is the cost of least expensive tank?Given Depth of tank = h = 2 m & Volume of tank = V = 8 m3 Let Length of Tank = š m Breadth of Tank = š m We know that Volume of tank = Length Ć Breadth Ć Height 8 = 2 Ć š„ Ć š¦ 4 = š„š¦ š = š/š Given Building tank costs Rs. 70 per sq. meter for base Area of base = Length Ć Breadth Area of base = š„š¦ ā“ Cost of base = 70š„š¦ Also given Cost is 45 per square meter for sides Area of sides = 2(āš+āš) = 2(2š„+2š¦) = 2 Ć 2(š„+š¦) = 4(š+š) Therefore, Cost of making sides = 45[4(š„+š¦)] = 180 (š+š) Let C be the total cost of tank C (š) = Cost of Base + Cost of Sides C (š„) = 70š„š¦ + 180 (š„+š¦) C (š„) = 70 Ć š„ Ć4/š„ + 180 (š„+4/š„) C (š„) = 280 + 180 (š„+4/š„) C (š„) = 280 + 180 (š+šš^(āš) ) We need to minimize cost of tank Finding C(x)ā C(š„) = 280 + 180 (š„+4š„^(ā1) ) Differentiating w.r.t x Cā(š„) = š(280 + 180(š„ + 4š„^(ā1) ))/šš„ Cā(š„)=0+180(1+(ā1)4š„^(ā1ā1) ) Cā(š„)=180(1ā4š„^(ā2) ) Cā(š)=ššš(šāš/š^š ) Putting Cā(š)=š 180 (1ā4/š„^2 )=0 (1ā4/š„^2 )=0 ((š„^2 ā 4))/š„^2 =0 š„2 ā 4 = 0 (š„ā2)(š„+2)=0 So, š„ = 2 or š„ = ā2 Since length of side cannot be negative ā“ š = 2 only Finding Cāā(š) Cā(š„)=180(1ā4š„^(ā2) ) Differentiating w.r.t š„ Cāā(š)=š(180(1 ā 4š„^(ā2) ))/šš„ = 180(0ā4(ā2) š„^(ā2ā1) ) = 180 (8š„^(ā3) ) = 1440 š„-3 = šššš/š^š Putting š = 2 Cāā (2) =1440/(2)^3 > 0 Since š^ā²ā² > 0 for x = 2 Thus, C is minimum at x = 2 Thus, Least cost of construction = C(2) = 280 + 180 (š„+4š„^(ā1) ) = 280 + 180 (2+4/2) = 280 + 180 (2+2) = 280 + 180 (4) = 280 + 720 = 1000 Hence, least cost of construction is Rs 1,000