Slide12.JPG

Slide13.JPG
Slide14.JPG
Slide15.JPG
Slide16.JPG Slide17.JPG Slide18.JPG

Go Ad-free

Transcript

Misc 3 Find the intervals in which the function f given by f(π‘₯) = (4 sin⁑〖π‘₯ βˆ’ 2π‘₯ βˆ’ π‘₯π‘π‘œπ‘  π‘₯γ€—)/(2 + cos⁑π‘₯ ) is (i) increasing (ii) decreasing.f(π‘₯) = (4 sin⁑〖π‘₯ βˆ’ 2π‘₯ βˆ’ π‘₯π‘π‘œπ‘  π‘₯γ€—)/(2 + cos⁑π‘₯ ) Let’s consider the interval [𝟎 , πŸπ…] Finding f’(𝒙) f(π‘₯) = (4 sin⁑〖π‘₯ βˆ’ 2π‘₯ βˆ’ π‘₯ π‘π‘œπ‘  π‘₯γ€—)/(2 + cos⁑π‘₯ ) f(π‘₯) = (4 sin⁑〖π‘₯ βˆ’ π‘₯(2 + cos⁑π‘₯ )γ€—)/(2 + cos⁑π‘₯ ) f(π‘₯) = (4 sin⁑π‘₯)/(2 + π‘π‘œπ‘ ) – π‘₯(2 + cos⁑π‘₯ )/(2 + cos⁑π‘₯ ) f(𝒙) = (πŸ’ π’”π’Šπ’β‘π’™)/(𝟐 + 𝒄𝒐𝒔⁑𝒙 )βˆ’π’™ Differentiating w.r.t π‘₯ f’(π‘₯) = 𝑑/𝑑π‘₯ ((4 sin⁑π‘₯)/(2 + π‘π‘œπ‘  π‘₯) βˆ’ π‘₯) = 𝑑/𝑑π‘₯ ((4 sin⁑π‘₯)/(2 + cos⁑π‘₯ )) – 𝑑(π‘₯)/𝑑π‘₯ = 𝑑/𝑑π‘₯ ((4 sin⁑π‘₯)/(2 + cos⁑π‘₯ )) – 1 = [((4 sin⁑π‘₯ )^β€² (2 + cos⁑π‘₯ )βˆ’(2 + cos⁑π‘₯ )^β€² (4 sin⁑π‘₯ ))/(2+cos⁑π‘₯ )^2 ] βˆ’1 = [(4 cos⁑π‘₯ (2 + cos⁑π‘₯ ) βˆ’ (βˆ’sin⁑π‘₯ )(4 sin⁑π‘₯ ))/(2 + cos⁑π‘₯ )^2 ] βˆ’1 = [(8 cos⁑π‘₯ + 4 cos^2⁑π‘₯ + 4 sin^2⁑π‘₯)/(2 + cos⁑π‘₯ )^2 ] βˆ’1 = (8 cos⁑π‘₯ + 4(〖𝒄𝒐𝒔〗^πŸβ‘π’™ +γ€– γ€–π’”π’Šπ’γ€—^πŸγ€—β‘π’™ ))/(2 + cos⁑π‘₯ )^2 βˆ’1 = (8 cos⁑π‘₯ + 4(𝟏))/(2 + cos⁑π‘₯ )^2 βˆ’1 = (8 cos⁑π‘₯ + 4 βˆ’(2 + cos⁑π‘₯ )^2)/(2+ cos⁑π‘₯ )^2 = (8 cos⁑〖π‘₯ + 4 βˆ’ (4 + cos^2⁑〖π‘₯ + 4 cos⁑π‘₯ γ€— )γ€—)/((2 + γ€–cos⁑π‘₯γ€—^2 ) ) = (8 π‘π‘œπ‘  π‘₯ βˆ’ cos^2⁑π‘₯ βˆ’ 4 cos⁑π‘₯ )/(2 +γ€– cos〗⁑π‘₯ )^2 = (4 cos⁑〖π‘₯ βˆ’γ€– cosγ€—^2⁑π‘₯ γ€—)/(2 + cos⁑π‘₯ )^2 ∴ f’(𝒙) = 𝒄𝒐𝒔⁑〖𝒙 (πŸ’ βˆ’ 𝒄𝒐𝒔⁑𝒙 )γ€—/(𝟐 + 𝒄𝒐𝒔⁑𝒙 )^𝟐 Putting f’(𝒙) = 0 cos⁑π‘₯(4 βˆ’ cos⁑π‘₯ )/(2 + π‘π‘œπ‘ β‘π‘₯ )^2 = 0 Thus, Numerator is 0 cos 𝒙 (πŸ’βˆ’π’„π’π’”β‘π’™ ) = 0 Thus, cos 𝒙 = 0 Since 0 ≀ π‘₯ ≀ 2πœ‹ So, values of 𝒙 are 𝝅/𝟐 & πŸ‘π…/𝟐 4 – cos π‘₯ = 0 cos π‘₯ = 4 But βˆ’1" ≀" cos⁑π‘₯ ≀ 1 So cos π‘₯ = 4 is not possible Plotting value of 𝒙 on number line So, f(π‘₯) is strictly increasing on (0 , πœ‹/2) & (3πœ‹/2 , 2πœ‹) f(π‘₯) is strictly decreasing on (πœ‹/2 ,3πœ‹/2) But we need to find Increasing & Decreasing f’(π‘₯) = π‘π‘œπ‘ β‘γ€–π‘₯ (4 βˆ’ π‘π‘œπ‘ β‘π‘₯ )γ€—/(2 + π‘π‘œπ‘ β‘π‘₯ )^2 Thus, f(π‘₯) is increasing on [𝟎 , 𝝅/𝟐] & [πŸ‘π…/𝟐 , πŸπ…] f(π‘₯) is decreasing on [𝝅/𝟐 ,πŸ‘π…/𝟐] For x = 0 f’(0) = 1/3 For x = πœ‹/2 f’(πœ‹/2) = 0 For x = 3πœ‹/2 f’(3πœ‹/2) = 0 For x = 2πœ‹ f’(2πœ‹) = 1/3

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo