Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22
Example 23 Important
Example 24
Example 25 Important
Example 26 Important
Example 27
Example 28 Important
Example 29 Important
Example 30 Important
Example 31 Important
Example 32 Important
Example 33 Important
Example 34 Important You are here
Example 35
Example 36 Important
Example 37
Question 1
Question 2
Question 3
Question 4 Important
Question 5
Question 6
Question 7
Question 8
Question 9
Question 10
Question 11
Question 12
Question 13 Important
Question 14 Important
Last updated at April 16, 2024 by Teachoo
Example 34 Show that the function f given by f (x) = tanβ1(sin x + cos x), x > 0 is always an strictly increasing function in (0,π/4) f(π₯)=tan^(β1)β‘(sinβ‘π₯+cosβ‘π₯ ) Finding fβ(π) fβ(π₯) = (π(tan^(β1)β‘γ(sinβ‘π₯ +cosβ‘π₯ ))γ)/ππ₯ = 1/(1 + (sinβ‘γπ₯ + cosβ‘π₯ γ )^2 ) Γ π(sinβ‘γπ₯ + cosβ‘π₯ γ )/ππ₯ = 1/(1 + (γγπ¬π’π§γ^π πγβ‘γ+γππ¨π¬γ^πβ‘γπ γ+ 2 sinβ‘π₯ cosβ‘π₯ γ ) ) Γ (cosβ‘π₯βsinβ‘π₯ ) = 1/(1 + (π + 2 sinβ‘π₯ cosβ‘π₯ ) ) Γ (cosβ‘π₯βsinβ‘π₯ ) = 1/(2 + 2 sinβ‘π₯ cosβ‘π₯ ) Γ (cosβ‘π₯βsinβ‘π₯ ) = ππ¨π¬β‘γπ βγ π¬π’π§γβ‘π γ/(π + π¬π’π§β‘ππ ) For increasing, fβ(x) > 0. β΄ Numerator and denominator both must be > 0 Checking sign for denominator Since Hence, denominator is always positive for 0 < x < π /π Checking sign for numerator cos π₯ β sin π₯ > 0 cos π₯ > sin π₯ 1 > sinβ‘π₯/cosβ‘π₯ 1 > tan π₯ πππ§β‘π<π This is possible only if π<π<π /π Thus, fβ(π) = ((+))/((+) ) > 0 in x β (0 , π/4) Hence, f is strictly increasing function in (π , π /π)