Slide29.JPG

Slide30.JPG
Slide31.JPG

Go Ad-free

Transcript

Example 34 Show that the function f given by f (x) = tan–1(sin x + cos x), x > 0 is always an strictly increasing function in (0,πœ‹/4) f(π‘₯)=tan^(βˆ’1)⁑(sin⁑π‘₯+cos⁑π‘₯ ) Finding f’(𝒙) f’(π‘₯) = (𝑑(tan^(βˆ’1)⁑〖(sin⁑π‘₯ +cos⁑π‘₯ ))γ€—)/𝑑π‘₯ = 1/(1 + (sin⁑〖π‘₯ + cos⁑π‘₯ γ€— )^2 ) Γ— 𝑑(sin⁑〖π‘₯ + cos⁑π‘₯ γ€— )/𝑑π‘₯ = 1/(1 + (〖〖𝐬𝐒𝐧〗^𝟐 𝒙〗⁑〖+γ€–πœπ¨π¬γ€—^πŸβ‘γ€–π’™ γ€—+ 2 sin⁑π‘₯ cos⁑π‘₯ γ€— ) ) Γ— (cos⁑π‘₯βˆ’sin⁑π‘₯ ) = 1/(1 + (𝟏 + 2 sin⁑π‘₯ cos⁑π‘₯ ) ) Γ— (cos⁑π‘₯βˆ’sin⁑π‘₯ ) = 1/(2 + 2 sin⁑π‘₯ cos⁑π‘₯ ) Γ— (cos⁑π‘₯βˆ’sin⁑π‘₯ ) = πœπ¨π¬β‘γ€–π’™ βˆ’γ€– 𝐬𝐒𝐧〗⁑𝒙 γ€—/(𝟐 + π¬π’π§β‘πŸπ’™ ) For increasing, f’(x) > 0. ∴ Numerator and denominator both must be > 0 Checking sign for denominator Since Hence, denominator is always positive for 0 < x < 𝝅/πŸ’ Checking sign for numerator cos π‘₯ – sin π‘₯ > 0 cos π‘₯ > sin π‘₯ 1 > sin⁑π‘₯/cos⁑π‘₯ 1 > tan π‘₯ π­πšπ§β‘π’™<𝟏 This is possible only if 𝟎<𝒙<𝝅/πŸ’ Thus, f’(𝒙) = ((+))/((+) ) > 0 in x ∈ (0 , πœ‹/4) Hence, f is strictly increasing function in (𝟎 , 𝝅/πŸ’)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo