Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22
Example 23 Important
Example 24
Example 25 Important
Example 26 Important
Example 27
Example 28 Important
Example 29 Important
Example 30 Important
Example 31 Important
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37
Question 1
Question 2
Question 3
Question 4 Important
Question 5
Question 6
Question 7
Question 8
Question 9
Question 10
Question 11
Question 12
Question 13 Important
Question 14 Important You are here
Last updated at Dec. 16, 2024 by Teachoo
Question 14 Find the equation of tangents to the curve y = cos (x + y), β 2π β€ x β€ 2π that are parallel to the line x + 2y = 0. Given curve is π¦ = cos (π₯+π¦) We need to find equation of tangent which is parallel to the line π₯ + 2π¦ = 0 We know that slope of tangent is ππ¦/ππ₯ π¦ = cos (π₯+π¦) Diff w.r.t. π ππ¦/ππ₯ = π(πππ (π₯ + π¦))/ππ₯ ππ¦/ππ₯ = βsin (π₯+π¦) π(π₯ + π¦)/ππ₯ ππ¦/ππ₯ = β sin (π₯+π¦) (ππ₯/ππ₯+ππ¦/ππ₯) ππ¦/ππ₯ = β sin (π₯+π¦) (1+ππ¦/ππ₯) ππ¦/ππ₯ = β sin (π₯+π¦) β sin(π₯+π¦). ππ¦/ππ₯ ππ¦/ππ₯ + sin (π₯+π¦).ππ¦/ππ₯ = β sin (π₯+π¦) ππ¦/ππ₯ (1+π ππ(π₯+π¦))=βπ ππ(π₯+π¦) π π/π π = (βπππ(π + π))/(π + πππ( π + π) ) β΄ Slope of tangent is (βπ ππ(π₯ + π¦))/(1 + π ππ(π₯ + π¦) ) Given line is π₯ + 2π¦ = 0 2π¦ = βπ₯ π¦ = (βπ₯)/2 π = (( βπ)/π)π+π The above equation is of the form π¦= mπ₯ + c where m is slope β΄ Slope of line is (β1)/2 We know that If two lines are parallel than their slopes are equal Since line is parallel to tangent β΄ Slope of tangent = Slope of line (βπππ(π + π))/(π + πππ(π + π) )= (βπ)/π π ππ(π₯ + π¦)/(1 + π ππ(π₯ + π¦) )= 1/2 2 sin(π₯+π¦)=1+π ππ(π₯+π¦) 2 sin (π₯+π¦) β sin(π₯+π¦)=1 sin (π+π)=π Since sin π/2 = 1 sin(π₯+π¦) = sin π /π Hence, (π₯ + π¦) = nΟ + (β1)^n π/2 Now, Finding points through which tangents pass Given curve y = cos (π₯+π¦) Putting value of x + y y = cos (ππ+(β1)^π π/2) y = 0 Putting y = 0 in x π₯ + π¦ = (ππ+(β1)^π π/2) π₯ + 0 = nΟ + (β1)^π π/2 π₯ = nΟ + (β1)^(π ) π/2 Since β2Ο β€ π₯ β€ 2Ο Thus, π₯ = (β3π)/2 & π₯ = π/2 β΄ Points are ((βππ )/π , π) & (π /π , π) Putting n = 0 π₯ = 0(π)+(β1)^0 π/2 π₯ = 0 + (π/2) π = π /π Putting n = β1 π₯ = β1(π)+(β1)^(β1) π/2 π₯ = βπβπ/2 π₯ = (β2π β π)/2 π = (βππ )/π Finding equation of tangents We know that Equation of line at (π₯1 ,π¦1) & having slope at π is (π¦βπ¦1)=π(π₯βπ₯1) Equation of tangent at ((βππ )/π , π) & having slope (βπ)/π is (π¦β0) = (β1)/2 (π₯β((β3π)/2)) y = (β1)/2 (π₯+3π/2) y = (β1)/2 ((2π₯ + 3π)/2) 2x + 4y + 3Ο = 0 Equation of tangent at (π /π , π) & having slope (βπ)/π is (π¦β0)= (β1)/2 (π₯βπ/2) π¦ = (β1)/2 ((2π₯ β π)/2) π¦ = (β1)/4 (2π₯βπ) 4y = β(2x β Ο) 2x + 4y β Ο = 0 Hence Required Equation of tangent are 2x + 4y + 3Ο = 0 2x + 4y β Ο = 0