Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22
Example 23 Important
Example 24
Example 25 Important
Example 26 Important
Example 27
Example 28 Important
Example 29 Important
Example 30 Important
Example 31 Important
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37
Question 1
Question 2
Question 3
Question 4 Important
Question 5
Question 6
Question 7
Question 8
Question 9
Question 10
Question 11
Question 12
Question 13 Important You are here
Question 14 Important
Last updated at April 16, 2024 by Teachoo
Question 13 Find the equation of the normal to the curve x2 = 4y which passes through the point (1, 2).Given Curve x2 = 4y Differentiating w.r.t. x 2x = 4ππ¦/ππ₯ ππ¦/ππ₯ = π₯/2 β΄ Slope of normal = (β1)/(ππ¦/ππ₯) = (β1)/((π₯/2) ) = (βπ)/π Let (h, k) be the point where normal & curve intersect We need to find equation of the normal to the curve x2 = 4y which passes through the point (1, 2). But to find equationβ¦ we need to find point on curve Let (h, k) be the point where normal & curve intersect β΄ Slope of normal at (h, k) = (βπ)/π Equation of normal passing through (h, k) with slope (β2)/β is y β y1 = m(x β x1) y β k = (βπ)/π (x β h) Since normal passes through (1, 2), it will satisfy its equation 2 β k = (β2)/β (1 β h) k = 2 + π/π (1 β h) Also, (h, k) lies on curve x2 = 4y h2 = 4k k = π^π/π From (1) and (2) 2 + 2/β (1 β h) = β^2/4 2 + 2/β β 2 = β^2/4 2/β = β^2/4 β^3 = 8 h = ("8" )^(1/3) h = 2 Putting h = 2 in (2) k = β^2/4 = γ(2)γ^2/4 = 4/4 = 1 Hence, h = 2 & k = 1 Putting h = 2 & k = 1 in equation of normal π¦βπ=(β2(π₯ β β))/β π¦β1=(β2(π₯ β 2))/2 π¦β1=β1(π₯β2) π¦β1=βπ₯+2 π₯+π¦=2+1 π+π=π