Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18 Important You are here
Example 19
Example 20 Important
Example 21 Important
Example 22
Example 23 Important
Example 24
Example 25 Important
Example 26 Important
Example 27
Example 28 Important
Example 29 Important
Example 30 Important
Example 31 Important
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37
Question 1
Question 2
Question 3
Question 4 Important
Question 5
Question 6
Question 7
Question 8
Question 9
Question 10
Question 11
Question 12
Question 13 Important
Question 14 Important
Last updated at April 16, 2024 by Teachoo
Example 18 (Method 1) Find all the points of local maxima and local minima of the function f given by f (đĽ)=2đĽ3 â6đĽ2+6đĽ+5.f (đĽ)=2đĽ3 â6đĽ2+ 6đĽ+5 Finding fâ (đ) f â˛(đĽ)= đ(2đĽ3 â 6đĽ2 + 6đĽ + 5)/đđĽ f â˛(đĽ)=6đĽ2 â12đĽ+6+0 f â˛(đĽ)=6(đĽ^2â2đĽ+1) Putting f â˛(đ)= 0 6(đĽ^2â2đĽ+1)=0 đĽ^2â2đĽ+1=0 (đĽ)^2+(1)^2â2(đĽ)(1)=0 (đĽâ1)^2=0 So, đ=đ is only critical point Hence đ=đ is point of inflexion Example 18 (Method 2) Find all the points of local maxima and local minima of the function f given by f (đĽ)=2đĽ3 â6đĽ2+6đĽ+5. f (đĽ)=2đĽ3 â6đĽ2+ 6đĽ+5 Finding fâ (đ) f â˛(đĽ)= đ(2đĽ3 â 6đĽ2+ 6đĽ + 5)/đđĽ f â˛(đĽ)=6đĽ2 â12đĽ+6+0 f â˛(đĽ)=6(đĽ^2â2đĽ+1) Putting f â˛(đ)= 0 6(đĽ^2â2đĽ+1)=0 đĽ^2â2đĽ+1=0 đĽ^2+1^2â2(đĽ)(1)=0 (đĽâ1)^2=0 So, đ=đ is only critical point Finding fââ(đ) fââ(đĽ)=6 đ(đĽ^2 â 2đĽ + 1)/đđĽ fââ(đĽ)=6(2đĽâ2+0) fââ(đĽ)=12(đĽâ1) Putting đ=đ fââ(1)=12(1â1) = 12 Ă 0 = 0 Since fââ(1) = 0 Hence, đĽ=1 is neither point of Maxima nor point of Minima â´ đ=đ is Point of Inflexion.