Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8 Important
Example 9 Important
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15
Example 16 Important
Example 17
Example 18 Important
Example 19
Example 20 Important
Example 21 Important
Example 22
Example 23 Important
Example 24
Example 25 Important
Example 26 Important
Example 27
Example 28 Important
Example 29 Important
Example 30 Important
Example 31 Important
Example 32 Important
Example 33 Important
Example 34 Important
Example 35
Example 36 Important
Example 37
Question 1
Question 2
Question 3 You are here
Question 4 Important
Question 5
Question 6
Question 7
Question 8
Question 9
Question 10
Question 11
Question 12
Question 13 Important
Question 14 Important
Last updated at April 16, 2024 by Teachoo
Question 3 Find the equation of all lines having slope 2 and being tangent Equation of curve is y + 2/(𝑥 − 3) = 0 Differentiating both sides w.r.t x (𝑑𝑦 )/𝑑𝑥 + (𝑑 )/𝑑𝑥 (2/(𝑥 − 3))=0 (𝑑𝑦 )/𝑑𝑥 =−(𝑑 )/𝑑𝑥 (2/(𝑥 − 3)) (𝑑𝑦 )/𝑑𝑥 =−2 (𝑑 )/𝑑𝑥 (𝑥−3)^(−1) (𝑑𝑦 )/𝑑𝑥 =−2〖 × −(𝑥−3)〗^(−1−1) (𝑑𝑦 )/𝑑𝑥 =2(𝑥−3)^(−2) (𝒅𝒚 )/𝒅𝒙 =𝟐/(𝒙 − 𝟑)^𝟐 Given that slope = 2 𝑑𝑦/𝑑𝑥 = 2 2/(𝑥 − 3)^2 = 2 1/(𝑥 − 3)^2 = 1 (𝑥−3)^2 = 1 𝑥−3 = ±1 x − 3 = 1 x = 4 x − 3 = − 1 x = 2 x − 3 = − 1 x = 2 So, x = 4 & x = 2 Finding value of y If x = 2 y = (−2)/(𝑥 − 3) y = (−2)/(2 − 3) 𝑦=2 Thus, point is (2, 2) If x = 4 y = (−2)/(𝑥 − 3) y = (−2)/(4 − 3) 𝑦=−2 Thus, point is (4, –2) Thus, there are 2 tangents to the curve with slope 2 and passing through points (2, 2) and (4, − 2) We know that Equation of line at (𝑥1 , 𝑦1)& having Slope m is 𝑦−𝑦1=𝑚(𝑥−𝑥1) Equation of tangent through (2, 2) is 𝑦 − 2 = 2 (𝑥 −2) 𝑦 − 2 = 2𝑥 − 4 𝒚−𝟐𝒙+𝟐 = 𝟎 Equation of tangent through (4, −2) is 𝑦 −(−2) = 2 (𝑥 −4) 𝑦 + 2 = 2𝑥 − 8 𝒚 − 𝟐𝒙 + 𝟏𝟎 = 𝟎 to the curve y + 2/(𝑥 − 3) = 0