Example 15 - Find point at which tangent to y = root 4x-3 - 1

Example 15 - Chapter 6 Class 12 Application of Derivatives - Part 2
Example 15 - Chapter 6 Class 12 Application of Derivatives - Part 3

Go Ad-free

Transcript

Question 2 Find the point at which the tangent to the curve 𝑦 = √(4𝑥−3)−1 has its slope 2/3 . Given, Slope of the tangent to the curve is 2/3 We know that Slope of tangent = 𝒅𝒚/𝒅𝒙 2/3 = 𝑑𝑦/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 2/3 𝑑(√(4𝑥 − 3) − 1)/𝑑𝑥 = 2/3 1/(2√(4𝑥 − 3)) ×4−0 = 2/3 2/√(4𝑥 − 3) = 2/3 3 = √(4𝑥−3) √(𝟒𝒙−𝟑) = 3 Squaring both sides 4x − 3 = 9 4x = 12 x = 3 Finding y for x = 3 𝑦=√(4𝑥−3) − 1 =√(12−3)−1 =√9−1 =3−1 =𝟐 Hence, the required point is (𝟑, 𝟐)

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo