Ex 6.3, 20 - Chapter 6 Class 12 Application of Derivatives
Last updated at Dec. 16, 2024 by Teachoo
Minima/ maxima (statement questions) - Geometry questions
Ex 6.3, 27 (MCQ)
Example 23 Important
Example 29 Important
Example 24
Misc 9 Important
Example 25 Important
Misc 6 Important
Ex 6.3,21
Ex 6.3, 20 Important You are here
Ex 6.3,24 Important
Ex 6.3,25 Important
Ex 6.3, 26 Important
Ex 6.3,22 Important
Misc 7
Misc 8 Important
Ex 6.3,17
Ex 6.3,18 Important
Example 36 Important
Ex 6.3,19 Important
Misc 5 Important
Ex 6.3,23 Important
Misc 12 Important
Misc 14 Important
Example 26 Important
Misc 15 Important
Minima/ maxima (statement questions) - Geometry questions
Last updated at Dec. 16, 2024 by Teachoo
Ex 6.3, 20 Show that the right circular cylinder of given surface and maximum volume is such that its height is equal to the diameter of the base. Let 𝑟, ℎ be the Radius & Height of Cylinder respectively & 𝑉, 𝑆 be the Volume & Surface area of Cylinder respectively Given Surface Area of Cylinder = 2𝜋𝑟^2+ 2𝜋𝑟ℎ S = 2𝜋𝑟^2+ 2𝜋𝑟ℎ S – 2𝜋𝑟^2= 2𝜋𝑟ℎ (𝑆 − 2𝜋𝑟^2)/2𝜋𝑟=ℎ ℎ=(𝑆 − 2𝜋𝑟^2)/2𝜋𝑟 Volume of Cylinder = 𝜋𝑟2ℎ V = 𝜋𝑟2ℎ We need to maximum volume Now, V = πr2h V = πr2 ((𝑆 − 2𝜋𝑟^2)/2𝜋𝑟) V = (𝜋𝑟^2)/2𝜋𝑟 (𝑆 −2𝜋𝑟^2 ) V = 𝑟/2 (𝑆 −2𝜋𝑟^2 ) V = 1/2 (𝑆𝑟 −2𝜋𝑟^3 ) Diff w.r.t 𝒓 𝑑𝑉/𝑑𝑟=1/2 𝑑(𝑆𝑟−2𝜋𝑟^3 )/𝑑𝑟 𝑑𝑉/𝑑𝑟=1/2 (𝑆−6𝜋𝑟^2 ) Putting 𝒅𝑽/𝒅𝒓=𝟎 1/2 (𝑆−6𝜋𝑟^2 )=0 𝑆−6𝜋𝑟^2=0 Putting value of 𝑆 = 2𝜋𝑟2+ 2𝜋𝑟ℎ (2𝜋𝑟^2+2𝜋𝑟ℎ)−6𝜋𝑟^2=0 −4𝜋 𝑟2 + 2𝜋𝑟ℎ = 0 2𝜋𝑟ℎ (−2𝑟+ℎ)=0 2𝜋𝑟ℎ(ℎ−2𝑟)=0 ℎ−2𝑟=0 ℎ=2𝑟 Finding (𝒅^𝟐 𝒗)/(𝒅𝒓^𝟐 ) 𝑑𝑉/𝑑𝑟=1/2 (𝑠−6𝜋𝑟^2 ) (𝑑^2 𝑉)/(𝑑𝑟^2 )=1/2 𝑑(𝑆 − 6𝜋𝑟^2 )/𝑑𝑟 \ (𝑑^2 𝑣)/(𝑑𝑟^2 )=1/2 (0−12𝜋𝑟) (𝑑^2 𝑣)/(𝑑𝑟^2 )=−6𝜋𝑟 ∴ (𝑑^2 𝑣)/(𝑑𝑟^2 )<0 for ℎ=2𝑟 Hence, Volume of a cylinder is Maximum when 𝒉=𝟐𝒓