Slide58.JPG

Slide59.JPG
Slide60.JPG
Slide61.JPG
Slide62.JPG Slide63.JPG Slide64.JPG Slide65.JPG Slide66.JPG Slide67.JPG Slide68.JPG

Go Ad-free

Transcript

Ex 6.3, 15 (Method 1) Find two positive numbers š‘„ and š‘¦ such that their sum is 35 and the product š‘„2 š‘¦5 is a maximum. Given two number are š‘„ & š‘¦ Such that š‘„ + š‘¦ = 35 š‘¦ = 35 ā€“ š‘„ Let P = š‘„2 š‘¦5 We need to maximize P Finding Pā€™(š’™) P(š‘„)=š‘„^2 š‘¦^5 P(š‘„)=š‘„^2 (35āˆ’š‘„)^5 Pā€™(š‘„)=š‘‘(š‘„^2 (35 āˆ’ š‘„)^5 )/š‘‘š‘„ Pā€™(š‘„)=š‘‘(š‘„^2 )/š‘‘š‘„ . (35āˆ’š‘„)^5+(š‘‘(35 āˆ’ š‘„)^5)/š‘‘š‘„ . š‘„^2 =2š‘„ .(35āˆ’š‘„)^5+怖5(35āˆ’š‘„)怗^4 .š‘‘(35 āˆ’ š‘„)/š‘‘š‘„ . š‘„^2 =2š‘„ .(35āˆ’š‘„)^5+怖5(35āˆ’š‘„)怗^4 . (0āˆ’1)(š‘„^2 ) =2š‘„ .(35āˆ’š‘„)^5+怖5(35āˆ’š‘„)怗^4 (āˆ’š‘„^2 ) =2š‘„ (35āˆ’š‘„)^5āˆ’怖5š‘„^2 (35āˆ’š‘„)怗^4 = 怖 š‘„ (35āˆ’š‘„)怗^4 [2(35āˆ’š‘„)āˆ’5š‘„] = 怖 š‘„ (35āˆ’š‘„)怗^4 (70āˆ’7š‘„) Putting Pā€™(š’™)=šŸŽ 怖 š‘„ (35āˆ’š‘„)怗^4 (70āˆ’7š‘„)=0 Hence š‘„ = 0 , 10 , 35 are Critical Points But, If we Take š‘„ = 0 Product will be 0 So, x = 0 is not possible If x = 35 š‘¦ = 35 ā€“ 35 = 35 ā€“ 35 = 0 So, product will be 0 So, x = 35 is not possible Hence only critical point is š‘„=10 Finding Pā€™ā€™(š’™) Pā€™(š‘„)=š‘„(35āˆ’š‘„)^4 (70āˆ’7š‘„) Pā€™(š‘„)=(35āˆ’š‘„)^4 (70š‘„āˆ’7š‘„^2 ) Pā€™ā€™(š‘„)=(š‘‘(35 āˆ’ š‘„)^4)/š‘‘š‘„. (70š‘„āˆ’7š‘„^2 )+š‘‘(70š‘„ āˆ’ 7š‘„^2 )/š‘‘š‘„ (35āˆ’š‘„)^4 =4(35āˆ’š‘„)^3.š‘‘(35 āˆ’ š‘„)/š‘‘š‘„. (70š‘„āˆ’7š‘„^2 )+(70āˆ’14š‘„) (35āˆ’š‘„)^4 =4(35āˆ’š‘„)^3 (0āˆ’1)(70š‘„āˆ’7š‘„^2 )+(70āˆ’14š‘„) (35āˆ’š‘„)^4 =āˆ’4(35āˆ’š‘„)^3 (70š‘„āˆ’7š‘„^2 )+(70āˆ’14š‘„) (35āˆ’š‘„)^4 Putting š‘„ = 10 in Pā€™ā€™(x) Pā€™ā€™(š‘„) = āˆ’4(35āˆ’š‘„)^3 (70š‘„āˆ’7š‘„^2 )+(70āˆ’14š‘„) (35āˆ’š‘„)^4 =āˆ’4(35āˆ’10)^3 (70(10)āˆ’7(10)^2 )+(70āˆ’14(10)) (35āˆ’10)^4 =āˆ’4(25)^3 (700āˆ’700)+(70āˆ’140) (25)^4 =āˆ’4(25)^3 (0)+(āˆ’70) (25)^4 =0āˆ’70(25)^4 =āˆ’70(25)^4 < 0 Thus, Pā€™ā€™(š‘„)<0 when š‘„ = 10 āˆ“ P is maximum when š‘„ = 10 Thus, when š‘„ = 10 š‘¦ = 35 ā€“ š‘„= 35 āˆ’10=25 Hence š’™ = 10 & š’š = 25 Ex 6.3, 15 (Method 2) Find two positive numbers š‘„ and š‘¦ such that their sum is 35 and the product š‘„2 š‘¦5 is a maximum. Given two number are š‘„ & š‘¦ Such that š‘„ + š‘¦ = 35 š‘¦ = 35 ā€“ š‘„ Let P = š‘„2 š‘¦5 We need to maximise P Finding Pā€™(š’™) P(š‘„)=š‘„^2 š‘¦^5 P(š‘„)=š‘„^2 (35āˆ’š‘„)^5 Pā€™(š‘„)=š‘‘(š‘„^2 (35 āˆ’ š‘„)^5 )/š‘‘š‘„ Pā€™(š‘„)=š‘‘(š‘„^2 )/š‘‘š‘„ . (35āˆ’š‘„)^5+(š‘‘(35 āˆ’ š‘„)^5)/š‘‘š‘„ . š‘„^2 =2š‘„ .(35āˆ’š‘„)^5+怖5(35āˆ’š‘„)怗^4 .š‘‘(35 āˆ’ š‘„)/š‘‘š‘„ . š‘„^2 =2š‘„ .(35āˆ’š‘„)^5+怖5(35āˆ’š‘„)怗^4 . (0āˆ’1)(š‘„^2 ) =2š‘„ .(35āˆ’š‘„)^5+怖5(35āˆ’š‘„)怗^4 (āˆ’š‘„^2 ) =2š‘„ (35āˆ’š‘„)^5āˆ’怖5š‘„^2 (35āˆ’š‘„)怗^4 = 怖 š‘„ (35āˆ’š‘„)怗^4 [2(35āˆ’š‘„)āˆ’5š‘„] = 怖 š‘„ (35āˆ’š‘„)怗^4 (70āˆ’7š‘„) Putting Pā€™(š’™)=šŸŽ 怖š‘„ (35āˆ’š‘„)怗^4 (70āˆ’7š‘„)=0 怖š‘„ (35āˆ’š‘„)怗^4 (70āˆ’7š‘„)=0 Hence š‘„ = 0 , 10 , 35 are Critical Points But, If We Take š‘„ = 0 Product will be 0 So, x = 0 is not possible If x = 35 š‘¦ = 35 ā€“ 35 = 35 ā€“ 35 = 0 So, product will be 0 So, x = 35 is not possible Hence only critical point is š‘„=10 āˆ“ š‘„ = 10 is point of maxima P(š‘„) is maximum at š‘„ = 10 Thus, when š‘„ = 10 š‘¦ = 35 ā€“ š‘„= 35 āˆ’10=25 Hence š’™ = 10 & š’š = 25

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo