Slide49.JPG

Slide50.JPG
Slide51.JPG
Slide52.JPG
Slide53.JPG Slide54.JPG Slide55.JPG Slide56.JPG Slide57.JPG

Go Ad-free

Transcript

Ex 6.3, 14 (Method 1) Find two positive numbers š‘„ and y such that š‘„ + š‘¦ = 60 and š‘„š‘¦3 is maximum. Given two number š‘„ and y, such that š‘„ + š‘¦ = 60 š‘¦=60āˆ’š‘„ Let P = š‘„š‘¦3 We need to maximize P Now, P = š‘„š‘¦3 Putting value of y from (1) P = š‘„(60āˆ’š‘„)3 Finding Pā€™(x) P = š‘„(60āˆ’š‘„)^3 Diff w.r.t š‘„ š‘‘š‘ƒ/š‘‘š‘„=š‘‘(š‘„(60 āˆ’ š‘„)^3 )/š‘‘š‘„ š‘‘š‘ƒ/š‘‘š‘„=š‘‘(š‘„)/š‘‘š‘„ (60āˆ’š‘„)^3+(š‘‘(60 āˆ’ š‘„)^3)/š‘‘š‘„ . š‘„ =(60āˆ’š‘„)^3+怖3(60āˆ’š‘„)怗^2 . (0āˆ’1) . š‘„ =(60āˆ’š‘„)^3āˆ’3š‘„(60āˆ’š‘„)^2 =(60āˆ’š‘„)^2 (60āˆ’š‘„)āˆ’3š‘„(60āˆ’š‘„)^2 =(60āˆ’š‘„)^2 [(60āˆ’š‘„)āˆ’3š‘„] =(60āˆ’š‘„)^2 [60āˆ’4š‘„] Putting š’…š‘·/š’…š’™=šŸŽ (60āˆ’š‘„)^2 (60āˆ’4š‘„)=0 So, x = 60 & x = 60/4 = 15 But, If š‘„=60, š‘¦= 60 ā€“ š‘„ = 60 ā€“ 60 = 0 Which is not possible Hence, š‘„= 15 is only critical point. Finding Pā€™ā€™ (š’™) Pā€™ā€™ (š‘„)=š‘‘((60 āˆ’ š‘„)^2 (60 āˆ’ 4š‘„))/š‘‘š‘„ Pā€™ā€™ (š‘„)=(š‘‘(60 āˆ’ š‘„)^2)/š‘‘š‘„ . (60āˆ’4š‘„)+š‘‘(60 āˆ’ 4š‘„)/š‘‘š‘„ (60āˆ’š‘„)^2 = 2(60āˆ’š‘„) .(0āˆ’1)(60āˆ’4š‘„)āˆ’4(60āˆ’š‘„)^2 = āˆ’2(60āˆ’š‘„) . (60āˆ’4š‘„)āˆ’4(60āˆ’š‘„)^2 = āˆ’2(60āˆ’š‘„)[(60āˆ’4š‘„)+2(60āˆ’š‘„)] = āˆ’2(60āˆ’š‘„)[(60āˆ’4š‘„)+120āˆ’2š‘„] = āˆ’2(60āˆ’š‘„)(180āˆ’6š‘„) At š’™ = 15 Pā€™ā€™(15)=āˆ’2(60āˆ’15)(180āˆ’6(15)) =āˆ’90 Ɨ90 =āˆ’8100 < 0 āˆ“ Pā€™ā€™(š‘„)<0 at š‘„ = 15 Hence š‘„š‘¦3 is Maximum when š‘„ = 15 Thus, when š‘„ = 15 š‘¦ =60 ā€“ š‘„=60 āˆ’15=45 Hence, numbers are 15 & 45

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo