Slide36.JPG

Slide37.JPG
Slide38.JPG
Slide39.JPG
Slide40.JPG Slide41.JPG Slide42.JPG Slide43.JPG Slide44.JPG

Go Ad-free

Transcript

Ex 6.3, 12 Find the maximum and minimum values of ๐‘ฅ + sin 2๐‘ฅ on [0, 2ฯ€ ] Let f(๐‘ฅ)=๐‘ฅ + sin 2๐‘ฅ Finding fโ€™(๐’™) ๐‘“โ€™(๐‘ฅ)=๐‘‘(๐‘ฅ + sin 2๐‘ฅ)/๐‘‘๐‘ฅ =1+2 cosโก2๐‘ฅ Putting fโ€™(๐’™)=๐ŸŽ 1 + 2 cos 2๐‘ฅ=0 2 cos 2๐‘ฅ=โˆ’1 cos 2๐‘ฅ=(โˆ’1)/2 cos 2๐‘ฅ=cosโกใ€–2๐œ‹/3ใ€— General solution for cos 2๐‘ฅ is 2๐‘ฅ=2๐‘›๐œ‹ยฑ2๐œ‹/3 ๐‘ฅ=(2๐‘›๐œ‹ ยฑ 2๐œ‹/3)/2 ๐‘ฅ= nฯ€ ยฑ ๐œ‹/3 Putting ๐‘›=0 ๐‘ฅ=0(๐œ‹)ยฑ๐œ‹/3 =ยฑ๐œ‹/3 " " We know that ๐‘๐‘œ๐‘  60ยฐ=1/2 And cos is negative in 2nd & 3rd quadrant ๐œƒ = 180 โˆ’ 60 = 120 = 120 ร— ๐œ‹/180 = 2๐œ‹/3 So, ๐‘ฅ=(โˆ’๐œ‹)/3,๐œ‹/3 Since Given ๐‘ฅ โˆˆ[0 , 2๐œ‹] โˆด ๐‘ฅ=๐œ‹/3 only Putting ๐‘›=1 ๐‘ฅ=(1)๐œ‹ยฑ๐œ‹/3 =๐œ‹ยฑ๐œ‹/3 =(3๐œ‹ + ๐œ‹)/3 , (3๐œ‹ โˆ’ ๐œ‹)/3 =4๐œ‹/3 , 2๐œ‹/3 Putting ๐‘›=2 ๐‘ฅ=2(๐œ‹)ยฑ๐œ‹/3 ๐‘ฅ=2๐œ‹โˆ’๐œ‹/3 & 2๐œ‹+๐œ‹/3 ๐‘ฅ=(6๐œ‹ โˆ’ ๐œ‹)/3 & (6๐œ‹ + ๐œ‹)/3 ๐‘ฅ=5๐œ‹/3 & 7๐œ‹/3 So, ๐‘ฅ=5๐œ‹/3 only Also, We are given interval ๐‘ฅ โˆˆ[0 , 2๐œ‹] Hence , calculating f(๐‘ฅ) at ๐‘ฅ=0 , ๐œ‹/3 , 2๐œ‹/3 , 4๐œ‹/3 , 5๐œ‹/3 , 2๐œ‹ Hence, f(๐‘ฅ) is Maximum at ๐‘ฅ=2๐œ‹ Maximum value of f(๐’™)=๐Ÿ๐… & f(๐‘ฅ) is Minimum at ๐‘ฅ=0 Minimum value of f(๐’™)=๐ŸŽ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo