Slide27.JPG

Slide28.JPG
Slide29.JPG

Go Ad-free

Transcript

Ex 6.3, 9 What is the maximum value of the function sin⁑π‘₯+cos⁑π‘₯? Let f(π‘₯)=sin⁑π‘₯+cos⁑π‘₯ Consider the interval π‘₯ ∈ [0 , 2πœ‹] Finding f’(𝒙) f’(π‘₯)=𝑑(sin⁑π‘₯ + cos⁑π‘₯ )/𝑑π‘₯ f’(π‘₯)=cos⁑π‘₯βˆ’sin⁑π‘₯ Putting f’(𝒙)=𝟎 cos⁑π‘₯βˆ’sin⁑π‘₯=0 cos⁑π‘₯=sin⁑π‘₯ 1 =sin⁑π‘₯/cos⁑π‘₯ 1= tan⁑π‘₯ tan π‘₯=1 Since π‘₯ ∈ [0 , 2πœ‹] tan π‘₯=1 at π‘₯=πœ‹/4 , π‘₯=5πœ‹/4 in the interval [0 , 2πœ‹] We have given the interval π‘₯ ∈ [0 , 2πœ‹] Hence Calculating f(π‘₯) at π‘₯=0 ,πœ‹/4 , 5πœ‹/4 & 2πœ‹ Hence Maximum Value of f(π‘₯) is √𝟐 at 𝒙 = 𝝅/πŸ’

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo