Ex 6.3, 6 - Find slope of normal x = 1 - a cos, y = b cos2

Ex 6.3,6 - Chapter 6 Class 12 Application of Derivatives - Part 2
Ex 6.3,6 - Chapter 6 Class 12 Application of Derivatives - Part 3

Go Ad-free

Transcript

Question 6 Find the slope of the normal to the curve π‘₯=1βˆ’π‘Ž sinβ‘πœƒ , 𝑦 =𝑏 cos^2 πœƒ at πœƒ= πœ‹/2Slope of tangent is 𝑑𝑦/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯=(𝑑𝑦/π‘‘πœƒ)/(𝑑π‘₯/π‘‘πœƒ) 𝒙=πŸβˆ’π’‚ π’”π’Šπ’β‘πœ½ Differentiating w.r.t. ΞΈ 𝑑π‘₯/π‘‘πœƒ=𝑑(1 βˆ’ π‘Ž sinβ‘πœƒ )/π‘‘πœƒ 𝑑π‘₯/π‘‘πœƒ=0βˆ’π‘Ž cosβ‘πœƒ 𝑑π‘₯/π‘‘πœƒ=βˆ’π‘Ž cosβ‘πœƒ π’š=𝒃 〖𝒄𝒐𝒔〗^𝟐⁑𝜽 Differentiating w.r.t. ΞΈ 𝑑𝑦/π‘‘πœƒ=𝑑(𝑏 cos^2β‘πœƒ )/π‘‘πœƒ 𝑑𝑦/π‘‘πœƒ=𝑏 . 2 cosβ‘γ€–πœƒ . 𝑑(cosβ‘πœƒ )/π‘‘πœƒγ€— 𝑑𝑦/π‘‘πœƒ=2𝑏 cosβ‘γ€–πœƒ . (βˆ’sinβ‘πœƒ )γ€— 𝑑𝑦/π‘‘πœƒ=βˆ’2𝑏 sinβ‘γ€–πœƒ cosβ‘πœƒ γ€— Now, 𝑑𝑦/𝑑π‘₯=(𝑑𝑦/π‘‘πœƒ)/(π‘‘πœƒ/π‘‘πœƒ) 𝑑𝑦/𝑑π‘₯=(βˆ’ 2𝑏 sinβ‘γ€–πœƒ cosβ‘πœƒ γ€—)/(βˆ’ π‘Ž cosβ‘πœƒ ) 𝑑𝑦/𝑑π‘₯=(2𝑏 sinβ‘πœƒ)/π‘Ž We need to find Slope of tangent at πœƒ=πœ‹/2 Putting πœƒ=πœ‹/2 β”œ 𝑑𝑦/𝑑π‘₯─|_(πœƒ = πœ‹/2)=2𝑏/π‘Ž 𝑠𝑖𝑛(πœ‹/2) =2𝑏/π‘Ž (1) We know that Tangent is Perpendicular to Normal Hence Slope of tangent Γ— Slope of Normal =βˆ’1 Slope of Normal =(βˆ’ 1)/(π‘†π‘™π‘œπ‘π‘’ π‘œπ‘“ π‘‘π‘Žπ‘›π‘”π‘’π‘›π‘‘ ) Slope of Normal =(βˆ’ 1)/( 𝑑𝑦/𝑑π‘₯) Slope of Normal =βˆ’1 Γ— π‘Ž/2𝑏 Slope of Normal =(βˆ’π‘Ž)/2𝑏 Hence Slope of Normal at is (βˆ’π’‚)/πŸπ’ƒ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo