Finding rate of change
Ex 6.1, 1
Ex 6.1,17 (MCQ)
Example 5
Ex 6.1,15 Important
Example 6
Ex 6.1,16
Ex 6.1, 18 (MCQ) Important You are here
Example 2
Ex 6.1,2
Example 35
Example 3
Ex 6.1,5 Important
Ex 6.1,3
Ex 6.1,6
Ex 6.1,12
Ex 6.1,13 Important
Misc 16 (MCQ)
Ex 6.1,14
Example 31 Important
Ex 6.1,4 Important
Example 30 Important
Example 4 Important
Ex 6.1,7
Ex 6.1,8
Ex 6.1,9
Ex 6.1,11 Important
Misc 2 Important
Ex 6.1,10 Important
Example 32 Important
Finding rate of change
Last updated at Dec. 16, 2024 by Teachoo
Ex 6.1, 18 The total revenue in Rupees received from the sale of 𝑥 units of a product is given by R(𝑥) = 3𝑥2 + 36𝑥 + 5. The marginal revenue, when 𝑥 = 15 is (A) 116 (B) 96 (C) 90 (D) 126Marginal revenue is rate of change of total revenue w. r. t the number of unit sold Let MR be marginal revenue So, MR = 𝒅𝑹/𝒅𝒙 Given, Total revenue = R (𝑥) = 3𝑥2 + 36𝑥 + 5 We need to find marginal revenue when 𝑥 = 15 i.e. MR when 𝑥 = 15 MR = 𝑑(𝑅(𝑥))/𝑑𝑥 MR = (𝑑 (3𝑥2 + 36𝑥 + 5) )/𝑑𝑥 MR = (𝑑(3𝑥2))/𝑑𝑥 + (𝑑(36𝑥))/𝑑𝑥 + (𝑑(5))/𝑑𝑥 MR = 3 (𝑑(𝑥2))/𝑑𝑥 + 36 (𝑑(𝑥))/𝑑𝑥 + 0 MR = 3 × 2𝑥 + 36 MR = 6𝒙 + 36 MR when 𝒙 = 15 MR = 6(15) + 36 MR = 90 + 36 MR = 126 Hence, the required marginal revenue is Rs. 126 Thus, D is the correct Answer