Slide16.JPG

Slide17.JPG
Slide18.JPG


Go Ad-free

Transcript

Theorem 7.6 :- If two sides of a triangle are unequal, the angle opposite to larger side is larger ( or greater ). Given :- ∆ABC such that AB > AC . To Prove :- ∠C > ∠B . Construction:- Take a point P on AB such that AP = AC and join CP. Let ∠APC = x° & ∠BCP = y° Proof:- Since AP = AC ⇒ ∠ACP = ∠APC ⇒ ∠ACP = x On line AB, ∠APC + ∠BPC = 180° ∠BPC = 180° − ∠APC ∠BPC = 180° − x In Δ PBC, ∠BPC + ∠PBC + ∠PCB = 180° 180° − 𝑥 + ∠PBC + 𝑦 = 180° ∠PBC = 180° − 180° + 𝑥 − 𝑦 ∠PBC = 𝑥 − 𝑦 ∠B = 𝑥 − 𝑦 Now, ∠C = ∠BPC + ∠PCA = 𝑥 + 𝑦 Thus, ∠C > ∠B Similarly, If AB > BC , Take point Q on AB such that BQ = BC, then we can prove ∠C > ∠A Hence Proved.

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo